Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 History  





2 Characteristics  



2.1  Chemical properties  





2.2  Isotopes  







3 Occurrence  



3.1  Mining and price  





3.2  Used nuclear fuels  







4 Applications  



4.1  Catalyst  





4.2  Ornamental uses  





4.3  Other uses  







5 Precautions  





6 See also  





7 References  





8 External links  














Rhodium






Afrikaans

العربية
Aragonés
Armãneashti
Asturianu
Azərbaycanca
Basa Bali

 / Bân-lâm-gú
Беларуская
Беларуская (тарашкевіца)

Bikol Central
Български

Bosanski
Brezhoneg
Català
Чӑвашла
Cebuano
Čeština
Corsu
Cymraeg
Dansk
الدارجة
Deutsch
Eesti
Ελληνικά
Español
Esperanto
Euskara
فارسی
Fiji Hindi
Français
Furlan
Gaeilge
Gaelg
Gàidhlig
Galego

/Hak-kâ-ngî
Хальмг

Հայերեն
ि
Hrvatski
Ido
Bahasa Indonesia
Interlingua
IsiZulu
Íslenska
Italiano
עברית
Jawa
Kabɩyɛ


Қазақша
Kernowek
Kiswahili
Коми
Kotava
Kreyòl ayisyen
Kurdî
Кыргызча
Кырык мары
Latina
Latviešu
Lëtzebuergesch
Lietuvių
Ligure
Limburgs
Livvinkarjala
La .lojban.
Lombard
Magyar
Македонски


مصرى
Bahasa Melayu
 
 / Mìng-dĕ̤ng-nḡ
Монгол

Nederlands
 

Nordfriisk
Norsk bokmål
Norsk nynorsk
Occitan
Oʻzbekcha / ўзбекча

ि
پنجابی
پښتو
Piemontèis
Polski
Português
Română
Runa Simi
Русский

Sardu
Seeltersk
Shqip
Sicilianu
Simple English
Slovenčina
Slovenščina
Soomaaliga
کوردی
Српски / srpski
Srpskohrvatski / српскохрватски
Suomi
Svenska
Tagalog
ி
Татарча / tatarça


Тоҷикӣ
Türkçe
Українська
اردو
ئۇيغۇرچە / Uyghurche
Vepsän kel
Tiếng Vit

Winaray

ייִדיש
Yorùbá


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 





This is a good article. Click here for more information.

From Wikipedia, the free encyclopedia
 


Rhodium, 45Rh
Rhodium
Pronunciation/ˈrdiəm/ (ROH-dee-əm)
Appearancesilvery white metallic
Standard atomic weight Ar°(Rh)
  • 102.90549±0.00002[1]
  • 102.91±0.01 (abridged)[2]
  • Rhodium in the periodic table
    Hydrogen Helium
    Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
    Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
    Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
    Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
    Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
    Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
    Co

    Rh

    Ir
    rutheniumrhodiumpalladium
    Atomic number (Z)45
    Groupgroup 9
    Periodperiod 5
    Block  d-block
    Electron configuration[Kr] 4d8 5s1
    Electrons per shell2, 8, 18, 16, 1
    Physical properties
    Phase at STPsolid
    Melting point2237 K ​(1964 °C, ​3567 °F)
    Boiling point3968 K ​(3695 °C, ​6683 °F)
    Density (at 20° C)12.423 g/cm3[3]
    when liquid (at m.p.)10.7 g/cm3
    Heat of fusion26.59 kJ/mol
    Heat of vaporization493 kJ/mol
    Molar heat capacity24.98 J/(mol·K)
    Vapor pressure
    P (Pa) 1 10 100 k 10 k 100 k
    at T (K) 2288 2496 2749 3063 3405 3997
    Atomic properties
    Oxidation states−3[4], −1, 0, +1, +2, +3, +4, +5, +6, +7[5] (an amphoteric oxide)
    ElectronegativityPauling scale: 2.28
    Ionization energies
    • 1st: 719.7 kJ/mol
  • 2nd: 1740 kJ/mol
  • 3rd: 2997 kJ/mol
  • Atomic radiusempirical: 134 pm
    Covalent radius142±7 pm
    Color lines in a spectral range
    Spectral lines of rhodium
    Other properties
    Natural occurrenceprimordial
    Crystal structureface-centered cubic (fcc) (cF4)
    Lattice constant

    Face-centered cubic crystal structure for rhodium

    a = 380.34 pm (at 20 °C)[3]
    Thermal expansion8.46×10−6/K (at 20 °C)[3]
    Thermal conductivity150 W/(m⋅K)
    Electrical resistivity43.3 nΩ⋅m (at 0 °C)
    Magnetic orderingparamagnetic[6]
    Molar magnetic susceptibility+111.0×10−6 cm3/mol (298 K)[7]
    Young's modulus380 GPa
    Shear modulus150 GPa
    Bulk modulus275 GPa
    Speed of sound thin rod4700 m/s (at 20 °C)
    Poisson ratio0.26
    Mohs hardness6.0
    Vickers hardness1100–8000 MPa
    Brinell hardness980–1350 MPa
    CAS Number7440-16-6
    History
    Discovery and first isolationWilliam Hyde Wollaston (1804)
    Isotopes of rhodium
  • e
  • Main isotopes[8] Decay
    abun­dance half-life (t1/2) mode pro­duct
    99Rh synth 16.1 d β+ 99Ru
    101Rh synth 4.07 y ε 101Ru
    101mRh synth 4.343 d ε 101Ru
    IT 101Rh
    102Rh synth 207 d β+ 102Ru
    β 102Pd
    102mRh synth 3.742 y β+ 102Ru
    IT 102Rh
    103Rh 100% stable
    105Rh synth 35.341 h β 105Pd
     Category: Rhodium
  • talk
  • edit
  • | references

    Rhodium is a chemical element; it has symbol Rh and atomic number 45. It is a very rare, silvery-white, hard, corrosion-resistant transition metal. It is a noble metal and a member of the platinum group. It has only one naturally occurring isotope, which is 103Rh. Naturally occurring rhodium is usually found as a free metal or as an alloy with similar metals and rarely as a chemical compound in minerals such as bowieite and rhodplumsite. It is one of the rarest and most valuable precious metals.

    Rhodium is found in platinum or nickel ores with the other members of the platinum group metals. It was discovered in 1803 by William Hyde Wollaston in one such ore, and named for the rose color of one of its chlorine compounds.

    The element's major use (consuming about 80% of world rhodium production) is as one of the catalysts in the three-way catalytic converters in automobiles. Because rhodium metal is inert against corrosion and most aggressive chemicals, and because of its rarity, rhodium is usually alloyed with platinumorpalladium and applied in high-temperature and corrosion-resistive coatings. White gold is often plated with a thin rhodium layer to improve its appearance, while sterling silver is often rhodium-plated to resist tarnishing. Rhodium is sometimes used to cure silicones: a two-part silicone in which one part containing a silicon hydride and the other containing a vinyl-terminated silicone are mixed; one of these liquids contains a rhodium complex.[9]

    Rhodium detectors are used in nuclear reactors to measure the neutron flux level. Other uses of rhodium include asymmetric hydrogenation used to form drug precursors and the processes for the production of acetic acid.

    History

    [edit]
    William Hyde Wollaston

    Rhodium (Greek rhodon (ῥόδον) meaning "rose") was discovered in 1803 by William Hyde Wollaston,[10] soon after he discovered palladium.[11][12][13] He used crude platinum ore presumably obtained from South America.[14] His procedure dissolved the ore in aqua regia and neutralized the acid with sodium hydroxide (NaOH). He then precipitated the platinum as ammonium chloroplatinate by adding ammonium chloride (NH
    4
    Cl
    ). Most other metals like copper, lead, palladium, and rhodium were precipitated with zinc. Diluted nitric acid dissolved all but palladium and rhodium. Of these, palladium dissolved in aqua regia but rhodium did not,[15] and the rhodium was precipitated by the addition of sodium chlorideasNa
    3
    [RhCl
    6
    nH
    2
    O
    . After being washed with ethanol, the rose-red precipitate was reacted with zinc, which displaced the rhodium in the ionic compound and thereby released the rhodium as free metal.[16]

    For decades, the rare element had only minor applications; for example, by the turn of the century, rhodium-containing thermocouples were used to measure temperatures up to 1800 °C.[17][18] They have exceptionally good stability in the temperature range of 1300 to 1800 °C.[19]

    The first major application was electroplating for decorative uses and as corrosion-resistant coating.[20] The introduction of the three-way catalytic converterbyVolvo in 1976 increased the demand for rhodium. The previous catalytic converters used platinum or palladium, while the three-way catalytic converter used rhodium to reduce the amount of NOx in the exhaust.[21][22][23]

    Characteristics

    [edit]
    Z Element No. of electrons/shell
    27 cobalt 2, 8, 15, 2
    45 rhodium 2, 8, 18, 16, 1
    77 iridium 2, 8, 18, 32, 15, 2
    109 meitnerium 2, 8, 18, 32, 32, 15, 2 (predicted)

    Rhodium is a hard, silvery, durable metal that has a high reflectance. Rhodium metal does not normally form an oxide, even when heated.[24] Oxygen is absorbed from the atmosphere only at the melting point of rhodium, but is released on solidification.[25] Rhodium has both a higher melting point and lower density than platinum. It is not attacked by most acids: it is completely insoluble in nitric acid and dissolves slightly in aqua regia.

    Chemical properties

    [edit]
    Wilkinson's catalyst

    Rhodium belongs to group 9 of the periodic table, but exhibits an atypical ground state valence electron configuration for that group. Like neighboring elements niobium (41), ruthenium (44), and palladium (46), it only has one electron in its outermost s orbital.

    Oxidation states
    of rhodium
    +0 Rh
    4
    (CO)
    12
    +1 RhCl(PH
    3
    )
    2
    +2 Rh
    2
    (O
    2
    CCH
    3
    )
    4
    +3 RhCl
    3
    , Rh
    2
    O
    3
    +4 RhO
    2
    +5 RhF
    5
    , Sr
    3
    LiRhO
    6
    +6 RhF
    6

    The common oxidation state of rhodium is +3, but oxidation states from 0 to +7 are also observed.[26] [27]

    Unlike ruthenium and osmium, rhodium forms no volatile oxygen compounds. The known stable oxides include Rh
    2
    O
    3
    , RhO
    2
    , RhO
    2
    ·xH
    2
    O
    , Na
    2
    RhO
    3
    , Sr
    3
    LiRhO
    6
    and Sr
    3
    NaRhO
    6
    .[28] Halogen compounds are known in nearly the full range of possible oxidation states. Rhodium(III) chloride, rhodium trifluoride, rhodium pentafluoride and rhodium hexafluoride are examples. The lower oxidation states are stable only in the presence of ligands.[29]

    The best-known rhodium-halogen compound is the Wilkinson's catalyst chlorotris(triphenylphosphine)rhodium(I). This catalyst is used in the hydroformylationorhydrogenationofalkenes.[30]

    Isotopes

    [edit]

    Naturally occurring rhodium is composed of only one isotope, 103Rh. The most stable radioisotopes are 101Rh with a half-life of 3.3 years, 102Rh with a half-life of 207 days, 102mRh with a half-life of 2.9 years, and 99Rh with a half-life of 16.1 days. Twenty other radioisotopes have been characterized with atomic weights ranging from 92.926 u (93Rh) to 116.925 u (117Rh). Most of these have half-lives shorter than an hour, except 100Rh (20.8 hours) and 105Rh (35.36 hours). Rhodium has numerous meta states, the most stable being 102mRh (0.141 MeV) with a half-life of about 2.9 years and 101mRh (0.157 MeV) with a half-life of 4.34 days (see isotopes of rhodium).[31]

    In isotopes weighing less than 103 (the stable isotope), the primary decay modeiselectron capture and the primary decay productisruthenium. In isotopes greater than 103, the primary decay mode is beta emission and the primary product is palladium.[32]

    Occurrence

    [edit]

    Rhodium is one of the rarest elements in the Earth's crust, comprising an estimated 0.0002 parts per million (2 × 10−10).[33] Its rarity affects its price and its use in commercial applications. The concentration of rhodium in nickel meteorites is typically 1 part per billion.[34] Rhodium has been measured in some potatoes with concentrations between 0.8 and 30 ppt.[35]

    Mining and price

    [edit]
    Rh price evolution
    Rhodium daily price 1992–2022

    The industrial extraction of rhodium is complex because the ores are mixed with other metals such as palladium, silver, platinum, and gold and there are very few rhodium-bearing minerals. It is found in platinum ores and extracted as a white inert metal that is difficult to fuse. Principal sources are located in South Africa; in river sands of the Ural Mountains in Russia; and in North America, including the copper-nickel sulfide mining area of the Sudbury, Ontario, region. Although the rhodium abundance at Sudbury is very small, the large amount of processed nickel ore makes rhodium recovery cost-effective.

    The main exporter of rhodium is South Africa (approximately 80% in 2010) followed by Russia.[36] The annual world production is 30 tonnes. The price of rhodium is highly variable.

    Used nuclear fuels

    [edit]

    Rhodium is a fission product of uranium-235: each kilogram of fission product contains a significant amount of the lighter platinum group metals. Used nuclear fuel is therefore a potential source of rhodium, but the extraction is complex and expensive, and the presence of rhodium radioisotopes requires a period of cooling storage for multiple half-lives of the longest-lived isotope (101Rh with a half-life of 3.3 years, and 102mRh with a half-life of 2.9 years), or about 10 years. These factors make the source unattractive and no large-scale extraction has been attempted.[37][38][39]

    Applications

    [edit]

    The primary use of this element is in automobiles as a catalytic converter, changing harmful unburned hydrocarbons, carbon monoxide, and nitrogen oxide exhaust emissions into less noxious gases. Of 30,000 kg of rhodium consumed worldwide in 2012, 81% (24,300 kg) went into this application, and 8,060 kg was recovered from old converters. About 964 kg of rhodium was used in the glass industry, mostly for production of fiberglass and flat-panel glass, and 2,520 kg was used in the chemical industry.[36]

    Catalyst

    [edit]

    Rhodium is preferable to the other platinum metals in the reductionofnitrogen oxidestonitrogen and oxygen:[40]

    2NO
    x
    x O
    2
    + N
    2

    In 2008, net demand (with the recycling accounted for) of rhodium for automotive converters made up 84% of the world usage,[41] with the number fluctuating around 80% in 2015−2021.[42]

    Rhodium catalysts are used in a number of industrial processes, notably in catalytic carbonylation of methanol to produce acetic acid by the Monsanto process.[43] It is also used to catalyze addition of hydrosilanes to molecular double bonds, a process important in manufacture of certain silicone rubbers.[44] Rhodium catalysts are also used to reduce benzenetocyclohexane.[45]

    The complex of a rhodium ion with BINAP is a widely used chiral catalyst for chiral synthesis, as in the synthesis of menthol.[46]

    Ornamental uses

    [edit]

    Rhodium finds use in jewelry and for decorations. It is electroplatedonwhite gold and platinum to give it a reflective white surface[47] at time of sale, after which the thin layer wears away with use. This is known as rhodium flashing in the jewelry business. It may also be used in coating sterling silver to protect against tarnish (silver sulfide, Ag2S, produced from atmospheric hydrogen sulfide, H2S). Solid (pure) rhodium jewelry is very rare, more because of the difficulty of fabrication (high melting point and poor malleability) than because of the high price.[48] The high cost ensures that rhodium is applied only as an electroplate. Rhodium has also been used for honors or to signify elite status, when more commonly used metals such as silver, gold or platinum were deemed insufficient. In 1979 the Guinness Book of World Records gave Paul McCartney a rhodium-plated disc for being history's all-time best-selling songwriter and recording artist.[49]

    Other uses

    [edit]

    Rhodium is used as an alloying agent for hardening and improving the corrosion resistance[24]ofplatinum and palladium. These alloys are used in furnace windings, bushings for glass fiber production, thermocouple elements, electrodes for aircraft spark plugs, and laboratory crucibles.[50] Other uses include:

    In automobile manufacturing, rhodium is also used in the construction of headlight reflectors.[55]

    Precautions

    [edit]
    Rhodium
    Hazards
    GHS labelling:

    Hazard statements

    H413

    Precautionary statements

    P273, P501[56]
    NFPA 704 (fire diamond)
    NFPA 704 four-colored diamondHealth 0: Exposure under fire conditions would offer no hazard beyond that of ordinary combustible material. E.g. sodium chlorideFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
    0
    0
    0

    Being a noble metal, pure rhodium is inert and harmless in elemental form.[57] However, chemical complexes of rhodium can be reactive. For rhodium chloride, the median lethal dose (LD50) for rats is 198 mg (RhCl
    3
    ) per kilogram of body weight.[58] Like the other noble metals, rhodium has not been found to serve any biological function.

    People can be exposed to rhodium in the workplace by inhalation. The Occupational Safety and Health Administration (OSHA) has specified the legal limit (Permissible exposure limit) for rhodium exposure in the workplace at 0.1 mg/m3 over an 8-hour workday, and the National Institute for Occupational Safety and Health (NIOSH) has set the recommended exposure limit (REL), at the same level. At levels of 100 mg/m3, rhodium is immediately dangerous to life or health.[59] For soluble compounds, the PEL and REL are both 0.001 mg/m3.[60]

    See also

    [edit]

    References

    [edit]
    1. ^ "Standard Atomic Weights: Rhodium". CIAAW. 2017.
  • ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (4 May 2022). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  • ^ a b c Arblaster, John W. (2018). Selected Values of the Crystallographic Properties of Elements. Materials Park, Ohio: ASM International. ISBN 978-1-62708-155-9.
  • ^ Ellis J E. Highly Reduced Metal Carbonyl Anions: Synthesis, Characterization, and Chemical Properties. Adv. Organomet. Chem, 1990, 31: 1-51.
  • ^ Rh(VII) is known in the RhO3+ cation, see Da Silva Santos, Mayara; Stüker, Tony; Flach, Max; Ablyasova, Olesya S.; Timm, Martin; von Issendorff, Bernd; Hirsch, Konstantin; Zamudio‐Bayer, Vicente; Riedel, Sebastian; Lau, J. Tobias (2022). "The Highest Oxidation State of Rhodium: Rhodium(VII) in [RhO3]+". Angew. Chem. Int. Ed. 61 (38): e202207688. doi:10.1002/anie.202207688. PMC 9544489. PMID 35818987.
  • ^ Lide, D. R., ed. (2005). "Magnetic susceptibility of the elements and inorganic compounds". CRC Handbook of Chemistry and Physics (PDF) (86th ed.). Boca Raton (FL): CRC Press. ISBN 0-8493-0486-5.
  • ^ Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. pp. E110. ISBN 0-8493-0464-4.
  • ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  • ^ Armin Fehn and Juergen Weidinger, Wacker Chemie AG, US patent US7129309B2
  • ^ Wollaston, W. H. (1804). "On a New Metal, Found in Crude Platina". Philosophical Transactions of the Royal Society of London. 94: 419–430. doi:10.1098/rstl.1804.0019.
  • ^ Griffith, W. P. (2003). "Rhodium and Palladium – Events Surrounding Its Discovery". Platinum Metals Review. 47 (4): 175–183. doi:10.1595/003214003X474175183.
  • ^ Wollaston, W. H. (1805). "On the Discovery of Palladium; With Observations on Other Substances Found with Platina". Philosophical Transactions of the Royal Society of London. 95: 316–330. doi:10.1098/rstl.1805.0024.
  • ^ Usselman, Melvyn (1978). "The Wollaston/Chenevix controversy over the elemental nature of palladium: A curious episode in the history of chemistry". Annals of Science. 35 (6): 551–579. doi:10.1080/00033797800200431.
  • ^ Lide, David R. (2004). CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data. Boca Raton: CRC Press. pp. 4–26. ISBN 978-0-8493-0485-9.
  • ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 1113. ISBN 978-0-08-037941-8.
  • ^ Griffith, W. P. (2003). "Bicentenary of Four Platinum Group Metals: Osmium and iridium – events surrounding their discoveries". Platinum Metals Review. 47 (4): 175–183. doi:10.1595/003214003X474175183.
  • ^ Hulett, G. A.; Berger, H. W. (1904). "Volatilization of Platinum". Journal of the American Chemical Society. 26 (11): 1512–1515. doi:10.1021/ja02001a012. Archived (PDF) from the original on 24 January 2024 – via Zenodo.
  • ^ ASTM Committee E.2.0. on Temperature Measurement (1993). "Platinum Type". Manual on the use of thermocouples in temperature measurement. ASTM Special Technical Publication. ASTM International. Bibcode:1981mutt.book.....B. ISBN 978-0-8031-1466-1.[permanent dead link]
  • ^ J.V. Pearce, F. Edler, C.J. Elliott, A. Greenen, P.M. Harris, C.G. Izquierdo, Y.G. Kim, M.J. Martin, I.M. Smith, D. Tucker and R.I. Veitcheva, A systematic investigation of the thermoelectric stability of Pt-Rh thermocouples between 1300 °C and 1500 °C, METROLOGIA, 2018, Volume: 55 Issue: 4 Pages: 558-567
  • ^ Kushner, Joseph B. (1940). "Modern rhodium plating". Metals and Alloys. 11: 137–140.
  • ^ Amatayakul, W.; Ramnäs, Olle (2001). "Life cycle assessment of a catalytic converter for passenger cars". Journal of Cleaner Production. 9 (5): 395. Bibcode:2001JCPro...9..395A. doi:10.1016/S0959-6526(00)00082-2.
  • ^ Heck, R.; Farrauto, Robert J. (2001). "Automobile exhaust catalysts". Applied Catalysis A: General. 221 (1–2): 443–457. doi:10.1016/S0926-860X(01)00818-3.
  • ^ Heck, R.; Gulati, Suresh; Farrauto, Robert J. (2001). "The application of monoliths for gas phase catalytic reactions". Chemical Engineering Journal. 82 (1–3): 149–156. Bibcode:2001ChEnJ..82..149H. doi:10.1016/S1385-8947(00)00365-X.
  • ^ a b Cramer, Stephen D.; Covino, Bernard S. Jr., eds. (1990). ASM handbook. Materials Park, OH: ASM International. pp. 393–396. ISBN 978-0-87170-707-9.
  • ^ Emsley, John (2001). Nature's Building Blocks ((Hardcover, First Edition) ed.). Oxford University Press. p. 363. ISBN 978-0-19-850340-8.
  • ^ Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils (1985). Lehrbuch der Anorganischen Chemie (91–100 ed.). Walter de Gruyter. pp. 1056–1057. ISBN 978-3-11-007511-3.
  • ^ Mayara da Silva Santos, Tony Stüker, Max Flach, Olesya S. Ablyasova, Martin Timm, Bernd von Issendorff, Konstantin Hirsch, Vicente Zamudio‐Bayer, Sebastian Riedel, J. Tobias Lau. The Highest Oxidation State of Rhodium: Rhodium(VII) in [RhO 3 ] +. Angewandte Chemie International Edition, 2022; 61 (38)
  • ^ Reisner, B. A.; Stacy, A. M. (1998). "Sr
    3
    ARhO
    6
    (A = Li, Na): Crystallization of a Rhodium(V) Oxide from Molten Hydroxide". Journal of the American Chemical Society. 120 (37): 9682–9989. doi:10.1021/ja974231q.
  • ^ Griffith, W. P. The Rarer Platinum Metals, John Wiley and Sons: New York, 1976, p. 313.
  • ^ Osborn, J. A.; Jardine, F. H.; Young, J. F.; Wilkinson, G. (1966). "The Preparation and Properties of Tris(triphenylphosphine)halogenorhodium(I) and Some Reactions Thereof Including Catalytic Homogeneous Hydrogenation of Olefins and Acetylenes and Their Derivatives". Journal of the Chemical Society A: 1711–1732. doi:10.1039/J19660001711.
  • ^ Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
  • ^ David R. Lide (ed.), Norman E. Holden in CRC Handbook of Chemistry and Physics, 85th Edition CRC Press. Boca Raton, Florida (2005). Section 11, Table of the Isotopes.
  • ^ Barbalace, Kenneth, "Table of Elements[permanent dead link]". Environmental Chemistry.com; retrieved 2007-04-14.
  • ^ D.E.Ryan, J.Holzbecher and R.R.Brooks, Chemical Geology, Volume 85, Issues 3–4, 30 July 1990, Pages 295-303
  • ^ Orecchio and Amorello, Foods, 2019, volume 8, issue 2, doi:10.3390/foods8020059
  • ^ a b Loferski, Patricia J. (2013). "Commodity Report: Platinum-Group Metals" (PDF). United States Geological Survey. Retrieved 16 July 2012.
  • ^ Kolarik, Zdenek; Renard, Edouard V. (2005). "Potential Applications of Fission Platinoids in Industry" (PDF). Platinum Metals Review. 49 (2): 79. doi:10.1595/147106705X35263.
  • ^ Kolarik, Zdenek; Renard, Edouard V. (2003). "Recovery of Value Fission Platinoids from Spent Nuclear Fuel. Part I PART I: General Considerations and Basic Chemistry" (PDF). Platinum Metals Review. 47 (2): 74–87. doi:10.1595/003214003X4727487.
  • ^ Kolarik, Zdenek; Renard, Edouard V. (2003). "Recovery of Value Fission Platinoids from Spent Nuclear Fuel. Part II: Separation Process" (PDF). Platinum Metals Review. 47 (2): 123–131. doi:10.1595/003214003X473123131.
  • ^ Shelef, M.; Graham, G. W. (1994). "Why Rhodium in Automotive Three-Way Catalysts?". Catalysis Reviews. 36 (3): 433–457. doi:10.1080/01614949408009468.
  • ^ Murray, Angela Janet (2012). Recovery of Platinum Group Metals from Spent Furnace Linings and Used Automotive Catalysts (PDF) (PhD thesis). University of Birmingham.
  • ^ "The Rhodium Market and Rhodium Price".
  • ^ Roth, James F. (1975). "Rhodium Catalysed Carbonylation of Methanol" (PDF). Platinum Metals Review. 19 (1 January): 12–14. doi:10.1595/003214075X1911214. Archived from the original (PDF) on 24 September 2015. Retrieved 5 February 2009.
  • ^ Heidingsfeldova, M. & Capka, M. (2003). "Rhodium complexes as catalysts for hydrosilylation crosslinking of silicone rubber". Journal of Applied Polymer Science. 30 (5): 1837. doi:10.1002/app.1985.070300505.
  • ^ Halligudi, S. B.; et al. (1992). "Hydrogenation of benzene to cyclohexane catalyzed by rhodium(I) complex supported on montmorillonite clay". Reaction Kinetics and Catalysis Letters. 48 (2): 547. Bibcode:1992RKCL...48..505T. doi:10.1007/BF02162706. S2CID 97802315.
  • ^ Akutagawa, S. (1995). "Asymmetric synthesis by metal BINAP catalysts". Applied Catalysis A: General. 128 (2): 171. doi:10.1016/0926-860X(95)00097-6.
  • ^ "Rhodium (Rh) | AMERICAN ELEMENTS ®". American Elements: The Materials Science Company. Retrieved 31 May 2024.
  • ^ Fischer, Torkel; Fregert, S.; Gruvberger, B.; Rystedt, I. (1984). "Contact sensitivity to nickel in white gold". Contact Dermatitis. 10 (1): 23–24. doi:10.1111/j.1600-0536.1984.tb00056.x. PMID 6705515. S2CID 46626556.
  • ^ "Hit & Run: Ring the changes". The Independent. London. 2 December 2008. Retrieved 6 June 2009.
  • ^ Lide, David R (2004). CRC handbook of chemistry and physics 2004–2005: a ready-reference book of chemical and physical data (85th ed.). Boca Raton: CRC Press. pp. 4–26. ISBN 978-0-8493-0485-9.
  • ^ Weisberg, Alfred M. (1999). "Rhodium plating". Metal Finishing. 97 (1): 296–299. doi:10.1016/S0026-0576(00)83088-3.
  • ^ Smith, Warren J. (2007). "Reflectors". Modern optical engineering: the design of optical systems. McGraw-Hill. pp. 247–248. ISBN 978-0-07-147687-4.
  • ^ McDonagh, C P; et al. (1984). "Optimum x-ray spectra for mammography: choice of K-edge filters for tungsten anode tubes". Phys. Med. Biol. 29 (3): 249–52. Bibcode:1984PMB....29..249M. doi:10.1088/0031-9155/29/3/004. PMID 6709704. S2CID 250873106.
  • ^ Sokolov, A. P.; Pochivalin, G. P.; Shipovskikh, Yu. M.; Garusov, Yu. V.; Chernikov, O. G.; Shevchenko, V. G. (1993). "Rhodium self-powered detector for monitoring neutron fluence, energy production, and isotopic composition of fuel". Atomic Energy. 74 (5): 365–367. doi:10.1007/BF00844622. S2CID 96175609.
  • ^ Stwertka, Albert. A Guide to the Elements, Oxford University Press, 1996, p. 125. ISBN 0-19-508083-1
  • ^ "MSDS - 357340". www.sigmaaldrich.com.
  • ^ Leikin, Jerrold B.; Paloucek Frank P. (2008). Poisoning and Toxicology Handbook. Informa Health Care. p. 846. ISBN 978-1-4200-4479-9.
  • ^ Landolt, Robert R.; Berk Harold W.; Russell, Henry T. (1972). "Studies on the toxicity of rhodium trichloride in rats and rabbits". Toxicology and Applied Pharmacology. 21 (4): 589–590. Bibcode:1972ToxAP..21..589L. doi:10.1016/0041-008X(72)90016-6. PMID 5047055.
  • ^ "NIOSH Pocket Guide to Chemical Hazards - Rhodium (metal fume and insoluble compounds, as Rh)". CDC. Retrieved 21 November 2015.
  • ^ "NIOSH Pocket Guide to Chemical Hazards - Rhodium (soluble compounds, as Rh)". CDC. Retrieved 21 November 2015.
  • [edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Rhodium&oldid=1231003834"

    Categories: 
    Rhodium
    Chemical elements
    Noble metals
    Transition metals
    Native element minerals
    Chemical elements with face-centered cubic structure
    Platinum-group metals
    Hidden categories: 
    All articles with dead external links
    Articles with dead external links from June 2024
    Articles with permanently dead external links
    Use dmy dates from January 2021
    Articles with short description
    Short description is different from Wikidata
    Chembox having GHS data
    Chembox container only
    Commons link is on Wikidata
    Articles with BNF identifiers
    Articles with BNFdata identifiers
    Articles with GND identifiers
    Articles with J9U identifiers
    Articles with LCCN identifiers
    Articles with LNB identifiers
    Articles with NDL identifiers
    Articles with NKC identifiers
    Good articles
     



    This page was last edited on 25 June 2024, at 22:28 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki