Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Tidal tensor for a spherical body  





2 Hessian formulation  



2.1  Spherically symmetric field  







3 In General Relativity  





4 See also  





5 References  





6 External links  














Tidal tensor







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


InNewton's theory of gravitation and in various relativistic classical theories of gravitation, such as general relativity, the tidal tensor represents

  1. tidal accelerations of a cloud of (electrically neutral, nonspinning) test particles,
  2. tidal stresses in a small object immersed in an ambient gravitational field.

The tidal tensor represents the relative acceleration due to gravity of two test masses separated by an infinitesimal distance. The component represents the relative acceleration in the direction produced by a displacement in the direction.

Tidal tensor for a spherical body

[edit]

The most common example of tides is the tidal force around a spherical body (e.g., a planet or a moon). Here we compute the tidal tensor for the gravitational field outside an isolated spherically symmetric massive object. According to Newton's gravitational law, the acceleration a at a distance r from a central mass mis

(to simplify the math, in the following derivations we use the convention of setting the gravitational constant G to one. To calculate the differential accelerations, the results are to be multiplied by G.)

Let us adopt the frameinpolar coordinates for our three-dimensional Euclidean space, and consider infinitesimal displacements in the radial and azimuthal directions, and , which are given the subscripts 1, 2, and 3 respectively.

We will directly compute each component of the tidal tensor, expressed in this frame. First, compare the gravitational forces on two nearby objects lying on the same radial line at distances from the central body differing by a distance h:

Because in discussing tensors we are dealing with multilinear algebra, we retain only first order terms, so . Since there is no acceleration in the or direction due to a displacement in the radial direction, the other radial terms are zero: .

Similarly, we can compare the gravitational force on two nearby observers lying at the same radius but displaced by an (infinitesimal) distance h in the or direction. Using some elementary trigonometry and the small angle approximation, we find that the force vectors differ by a vector tangent to the sphere which has magnitude

By using the small angle approximation, we have ignored all terms of order , so the tangential components are . Again, since there is no acceleration in the radial direction due to displacements in either of the azimuthal directions, the other azimuthal terms are zero: .

Combining this information, we find that the tidal tensor is diagonal with frame components This is the Coulomb form characteristic of spherically symmetric central force fields in Newtonian physics.

Hessian formulation

[edit]

In the more general case where the mass is not a single spherically symmetric central object, the tidal tensor can be derived from the gravitational potential , which obeys the Poisson equation:

where is the mass density of any matter present, and where is the Laplace operator. Note that this equation implies that in a vacuum solution, the potential is simply a harmonic function.

The tidal tensor is given by the traceless part [1]

of the Hessian

where we are using the standard Cartesian chart for E3, with the Euclidean metric tensor

Using standard results in vector calculus, this is readily converted to expressions valid in other coordinate charts, such as the polar spherical chart

Spherically symmetric field

[edit]

As an example, we can calculate the tidal tensor for a spherical body using the Hessian. Next, let us plug the gravitational potential into the Hessian. We can convert the expression above to one valid in polar spherical coordinates, or we can convert the potential to Cartesian coordinates before plugging in. Adopting the second course, we have , which gives

After a rotation of our frame, which is adapted to the polar spherical coordinates, this expression agrees with our previous result. The easiest way to see this is to set to zero so that the off-diagonal terms vanish and , and then invoke the spherical symmetry.

In General Relativity

[edit]

In general relativity, the tidal tensor is generalized by the Riemann curvature tensor. In the weak field limit, the tidal tensor is given by the components of the curvature tensor.


See also

[edit]

References

[edit]
  1. ^ Baldauf, Tobias; Seljak, Uros; Desjacques, Vincent; McDonald, Patrick (13 January 2018). "Evidence for Quadratic Tidal Tensor Bias from the Halo Bispectrum". Physical Review D. 86 (8): 083540. arXiv:1201.4827. Bibcode:2012PhRvD..86h3540B. doi:10.1103/PhysRevD.86.083540. S2CID 21681130.
[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Tidal_tensor&oldid=1213273741"

Categories: 
Tensor physical quantities
Gravity
Tides
Hidden categories: 
Articles needing additional references from April 2018
All articles needing additional references
CS1 errors: missing periodical
 



This page was last edited on 12 March 2024, at 01:30 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki