Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Overview  





2 Implementations  





3 References  





4 External links  














VMAC






فارسی
Türkçe
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


VMAC is a block cipher-based message authentication code (MAC) algorithm using a universal hash proposed by Ted Krovetz and Wei Dai in April 2007. The algorithm was designed for high performance backed by a formal analysis. [citation needed]

VMAC is designed to have exceptional performance in software on 64-bit CPU architectures while still performing well on 32-bit architectures. [citation needed] Measured speeds are as fast as one-half CPU cycle per byte (cpb) on 64-bit architectures, under five cpb on desktop 32-bit processors, and around ten cpb on embedded 32-bit architectures.[1] A closely related variant of VMAC that is optimized for 32-bit architectures is given by UMAC.

Overview[edit]

VMAC is a MAC in the style of Wegman and Carter.[2][3] A fast "universal" hash function is used to hash an input message M into a short string. [citation needed] This short string is then combined by addition with a pseudorandom pad, resulting in the VMAC tag. Security depends on the sender and receiver sharing a randomly chosen secret hash function and pseudorandom pad. This is achieved by using keyed hash function H and pseudorandom function F. A tag is generated by performing the computation

    Tag = HK1(M) + FK2(Nonce)

where K1 and K2 are secret random keys shared by sender and receiver, and Nonce is a value that changes with each generated tag. The receiver needs to know which nonce was used by the sender, so some method of synchronizing nonces needs to be used. This can be done by explicitly sending the nonce along with the message and tag, or agreeing upon the use of some other non-repeating value such as a sequence number. The nonce need not be kept secret, but care needs to be taken to ensure that, over the lifetime of a VMAC key, a different nonce is used with each message.

VMAC uses a function, called VHASH (also specified in this document), as the keyed hash function H and uses a pseudorandom function F whose default implementation uses the AES block cipher. VMAC allows for tag lengths of any 64-bit multiple up to the block size of the block cipher in use. When using AES, this means VMAC can produce 64- or 128-bit tags.

The theory of Wegman-Carter MACs and the analysis of VMAC show that if one "instantiates" VMAC with truly random keys and pads then the probability that an attacker (even a computationally unbounded one) produces a correct tag for messages of its choosing is less than 1/260 or 1/2120 when the tags are of length 64 or 128 bits, respectively. When an attacker makes N forgery attempts the probability of getting one or more tags right increases linearly to less than N/260 or N/2120. In an applied implementation of VMAC, using AES to produce keys and pads, these forgery probabilities increase by a small amount related to the security of AES. As long as AES is secure, this small additive term is insignificant for any practical attack. See specification for more details. Analysis of VMAC security has been carried out by authors Wei Dai and Ted Krovetz. [citation needed][4]

Implementations[edit]

References[edit]

  1. ^ T. Krovetz and W. Dai (2007). "VMAC: Message Authentication Code using Universal Hashing". CFRG Working Group. IETF. Retrieved 2010-08-12.
  • ^ J. Carter; M. Wegman (1977). "Universal classes of hash functions (Extended Abstract)". Proceedings of the ninth annual ACM symposium on Theory of computing - STOC '77. ACM. pp. 106–112. doi:10.1145/800105.803400. S2CID 1302091.
  • ^ J. Carter; M. Wegman (1981). "New hash functions and their use in authentication and set equality". Journal of Computer and System Sciences. 22 (3): 265–279. doi:10.1016/0022-0000(81)90033-7.
  • ^ T. Krovetz (2007). "Message Authentication on 64-Bit Architectures" (PDF). Selected Areas in Cryptography. Lecture Notes in Computer Science. Vol. 4356. Springer-Verlag. pp. 327–341. doi:10.1007/978-3-540-74462-7_23. ISBN 978-3-540-74461-0. ISSN 0302-9743.
  • ^ "vmac.h (source code)". Retrieved 2022-11-13.
  • ^ "vmac.c (source code)". Retrieved 2022-11-13.
  • ^ "Crypto++: vmac.h Source File". www.cryptopp.com.
  • ^ "Crypto++: vmac.cpp Source File". www.cryptopp.com.
  • ^ Krovetz, Ted (2007-04-22). "An unoptimized, straightforward reference implementation of VMAC". Retrieved 2022-11-13.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=VMAC&oldid=1182534524"

    Category: 
    Message authentication codes
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from August 2010
    Webarchive template wayback links
     



    This page was last edited on 29 October 2023, at 22:32 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki