Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Strict avalanche criterion  





2 Bit independence criterion  





3 See also  





4 References  





5 External links  














Avalanche effect






العربية
Deutsch
Español
فارسی
Français

Հայերեն
Bahasa Indonesia
Português
Русский
Simple English
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Incryptography, the avalanche effect is the desirable property of cryptographic algorithms, typically block ciphers[1] and cryptographic hash functions, wherein if an input is changed slightly (for example, flipping a single bit), the output changes significantly (e.g., half the output bits flip). In the case of high-quality block ciphers, such a small change in either the key or the plaintext should cause a drastic change in the ciphertext. The actual term was first used by Horst Feistel,[1] although the concept dates back to at least Shannon's diffusion.

The SHA-1 hash function exhibits good avalanche effect. When a single bit is changed the hash sum becomes completely different.

If a block cipher or cryptographic hash function does not exhibit the avalanche effect to a significant degree, then it has poor randomization, and thus a cryptanalyst can make predictions about the input, being given only the output. This may be sufficient to partially or completely break the algorithm. Thus, the avalanche effect is a desirable condition from the point of view of the designer of the cryptographic algorithm or device. Failure to incorporate this characteristic leads to the hash function being exposed to attacks including collision attacks, length extension attacks, and preimage attacks.[2]

Constructing a cipher or hash to exhibit a substantial avalanche effect is one of the primary design objectives, and mathematically the construction takes advantage of the butterfly effect.[3] This is why most block ciphers are product ciphers. It is also why hash functions have large data blocks. Both of these features allow small changes to propagate rapidly through iterations of the algorithm, such that every bit of the output should depend on every bit of the input before the algorithm terminates.[citation needed]

Strict avalanche criterion

[edit]

The strict avalanche criterion (SAC) is a formalization of the avalanche effect. It is satisfied if, whenever a single input bit is complemented, each of the output bits changes with a 50% probability. The SAC builds on the concepts of completeness and avalanche and was introduced by Webster and Tavares in 1985.[4]

Higher-order generalizations of SAC involve multiple input bits. Boolean functions which satisfy the highest order SAC are always bent functions, also called maximally nonlinear functions, also called "perfect nonlinear" functions.[5]

Bit independence criterion

[edit]

The bit independence criterion (BIC) states that output bits j and k should change independently when any single input bit i is inverted, for all i, j and k.[6]

See also

[edit]

References

[edit]
  1. ^ a b Feistel, Horst (1973). "Cryptography and Computer Privacy". Scientific American. 228 (5): 15–23. Bibcode:1973SciAm.228e..15F. doi:10.1038/scientificamerican0573-15.
  • ^ Upadhyay, D., Gaikwad, N., Zaman, M., & Sampalli, S. (2022). Investigating the Avalanche Effect of Various Cryptographically Secure Hash Functions and Hash-Based Applications. IEEE Access, 10, 112472–112486. https://doi.org/10.1109/ACCESS.2022.3215778
  • ^ Al-Kuwari, Saif; Davenport, James H.; Bradford, Russell J. (2011). Cryptographic Hash Functions: Recent Design Trends and Security Notions. Inscrypt '10.
  • ^ Webster, A. F.; Tavares, Stafford E. (1985). "On the design of S-boxes". Advances in Cryptology – Crypto '85. Lecture Notes in Computer Science. Vol. 218. New York, NY: Springer-Verlag New York, Inc. pp. 523–534. ISBN 0-387-16463-4.
  • ^ Adams, C. M.; Tavares, S. E. (January 1990). The Use of Bent Sequences to Achieve Higher-Order Strict Avalanche Criterion in S-box Design (Report). Technical Report TR 90-013. Queen's University. CiteSeerX 10.1.1.41.8374.
  • ^ William, Stallings (2016). Cryptography and network security : principles and practice (Seventh ed.). Boston. p. 136. ISBN 9780134444284. OCLC 933863805.{{cite book}}: CS1 maint: location missing publisher (link)
  • [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Avalanche_effect&oldid=1189887371"

    Category: 
    Symmetric-key cryptography
    Hidden categories: 
    CS1 maint: location missing publisher
    Articles with short description
    Short description is different from Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from June 2010
     



    This page was last edited on 14 December 2023, at 17:23 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki