Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition  





2 Motivation  



2.1  Diffusion  





2.2  Averages  





2.3  Density associated with a potential  





2.4  Energy minimization  







3 Coordinate expressions  



3.1  Two dimensions  





3.2  Three dimensions  





3.3  Ndimensions  







4 Euclidean invariance  





5 Spectral theory  





6 Vector Laplacian  



6.1  Generalization  





6.2  Use in physics  







7 Generalizations  



7.1  LaplaceBeltrami operator  





7.2  D'Alembertian  







8 See also  





9 Notes  





10 References  





11 Further reading  





12 External links  














Laplace operator






العربية
Беларуская
Български
Català
Чӑвашла
Čeština
Dansk
Deutsch
Eesti
Español
Esperanto
فارسی
Français
Galego

Հայերեն
Ido
Íslenska
Italiano
עברית
Қазақша
Lietuvių
Magyar
Nederlands

Norsk bokmål
Norsk nynorsk
Piemontèis
Polski
Português
Română
Русский
Simple English
Slovenčina
Slovenščina
Српски / srpski
Srpskohrvatski / српскохрватски
Svenska
Türkçe
Українська
Tiếng Vit


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Vector Laplace operator)

Inmathematics, the Laplace operatororLaplacian is a differential operator given by the divergence of the gradient of a scalar functiononEuclidean space. It is usually denoted by the symbols , (where is the nabla operator), or . In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian Δf (p) of a function f at a point p measures by how much the average value of f over small spheres or balls centered at p deviates from f (p).

The Laplace operator is named after the French mathematician Pierre-Simon de Laplace (1749–1827), who first applied the operator to the study of celestial mechanics: the Laplacian of the gravitational potential due to a given mass density distribution is a constant multiple of that density distribution. Solutions of Laplace's equation Δf = 0 are called harmonic functions and represent the possible gravitational potentials in regions of vacuum.

The Laplacian occurs in many differential equations describing physical phenomena. Poisson's equation describes electric and gravitational potentials; the diffusion equation describes heat and fluid flow; the wave equation describes wave propagation; and the Schrödinger equation describes the wave functioninquantum mechanics. In image processing and computer vision, the Laplacian operator has been used for various tasks, such as blob and edge detection. The Laplacian is the simplest elliptic operator and is at the core of Hodge theory as well as the results of de Rham cohomology.

Definition[edit]

The Laplace operator is a second-order differential operator in the n-dimensional Euclidean space, defined as the divergence () of the gradient (). Thus if is a twice-differentiable real-valued function, then the Laplacian of is the real-valued function defined by:

(1)

where the latter notations derive from formally writing: Explicitly, the Laplacian of f is thus the sum of all the unmixed second partial derivatives in the Cartesian coordinates xi:

(2)

As a second-order differential operator, the Laplace operator maps Ck functions to Ck−2 functions for k ≥ 2. It is a linear operator Δ : Ck(Rn) → Ck−2(Rn), or more generally, an operator Δ : Ck(Ω) → Ck−2(Ω) for any open set Ω ⊆ Rn.

Motivation[edit]

Diffusion[edit]

In the physical theory of diffusion, the Laplace operator arises naturally in the mathematical description of equilibrium.[1] Specifically, if u is the density at equilibrium of some quantity such as a chemical concentration, then the net fluxofu through the boundary V of any smooth region V is zero, provided there is no source or sink within V: where n is the outward unit normal to the boundary of V. By the divergence theorem,

Since this holds for all smooth regions V, one can show that it implies: The left-hand side of this equation is the Laplace operator, and the entire equation Δu = 0 is known as Laplace's equation. Solutions of the Laplace equation, i.e. functions whose Laplacian is identically zero, thus represent possible equilibrium densities under diffusion.

The Laplace operator itself has a physical interpretation for non-equilibrium diffusion as the extent to which a point represents a source or sink of chemical concentration, in a sense made precise by the diffusion equation. This interpretation of the Laplacian is also explained by the following fact about averages.

Averages[edit]

Given a twice continuously differentiable function and a point . Then, the average value of over the ball with radius centered at is:[2]

Similarly, the average value of over the sphere (the boundary of a ball) with radius centered at is:

Density associated with a potential[edit]

Ifφ denotes the electrostatic potential associated to a charge distribution q, then the charge distribution itself is given by the negative of the Laplacian of φ: where ε0 is the electric constant.

This is a consequence of Gauss's law. Indeed, if V is any smooth region with boundary V, then by Gauss's law the flux of the electrostatic field E across the boundary is proportional to the charge enclosed: where the first equality is due to the divergence theorem. Since the electrostatic field is the (negative) gradient of the potential, this gives:

Since this holds for all regions V, we must have

The same approach implies that the negative of the Laplacian of the gravitational potential is the mass distribution. Often the charge (or mass) distribution are given, and the associated potential is unknown. Finding the potential function subject to suitable boundary conditions is equivalent to solving Poisson's equation.

Energy minimization[edit]

Another motivation for the Laplacian appearing in physics is that solutions to Δf = 0 in a region U are functions that make the Dirichlet energy functional stationary:

To see this, suppose f : UR is a function, and u : UR is a function that vanishes on the boundary of U. Then:

where the last equality follows using Green's first identity. This calculation shows that if Δf = 0, then E is stationary around f. Conversely, if E is stationary around f, then Δf = 0 by the fundamental lemma of calculus of variations.

Coordinate expressions[edit]

Two dimensions[edit]

The Laplace operator in two dimensions is given by:

InCartesian coordinates, where x and y are the standard Cartesian coordinates of the xy-plane.

Inpolar coordinates, where r represents the radial distance and θ the angle.

Three dimensions[edit]

In three dimensions, it is common to work with the Laplacian in a variety of different coordinate systems.

InCartesian coordinates,

Incylindrical coordinates, where represents the radial distance, φ the azimuth angle and z the height.

Inspherical coordinates: or by expanding the first term, these expressions read where φ represents the azimuthal angle and θ the zenith angleorco-latitude.

In general curvilinear coordinates (ξ1, ξ2, ξ3):

where summation over the repeated indices is implied, gmn is the inverse metric tensor and Γl mn are the Christoffel symbols for the selected coordinates.

N dimensions[edit]

In arbitrary curvilinear coordinatesinN dimensions (ξ1, ..., ξN), we can write the Laplacian in terms of the inverse metric tensor, : from the Voss-Weyl formula[3] for the divergence.

Inspherical coordinates in N dimensions, with the parametrization x = RN with r representing a positive real radius and θ an element of the unit sphere SN−1, where ΔSN−1 is the Laplace–Beltrami operator on the (N − 1)-sphere, known as the spherical Laplacian. The two radial derivative terms can be equivalently rewritten as:

As a consequence, the spherical Laplacian of a function defined on SN−1RN can be computed as the ordinary Laplacian of the function extended to RN∖{0} so that it is constant along rays, i.e., homogeneous of degree zero.

Euclidean invariance[edit]

The Laplacian is invariant under all Euclidean transformations: rotations and translations. In two dimensions, for example, this means that: for all θ, a, and b. In arbitrary dimensions, whenever ρ is a rotation, and likewise: whenever τ is a translation. (More generally, this remains true when ρ is an orthogonal transformation such as a reflection.)

In fact, the algebra of all scalar linear differential operators, with constant coefficients, that commute with all Euclidean transformations, is the polynomial algebra generated by the Laplace operator.

Spectral theory[edit]

The spectrum of the Laplace operator consists of all eigenvalues λ for which there is a corresponding eigenfunction f with:

This is known as the Helmholtz equation.

IfΩ is a bounded domain in Rn, then the eigenfunctions of the Laplacian are an orthonormal basis for the Hilbert space L2(Ω). This result essentially follows from the spectral theoremoncompact self-adjoint operators, applied to the inverse of the Laplacian (which is compact, by the Poincaré inequality and the Rellich–Kondrachov theorem).[4] It can also be shown that the eigenfunctions are infinitely differentiable functions.[5] More generally, these results hold for the Laplace–Beltrami operator on any compact Riemannian manifold with boundary, or indeed for the Dirichlet eigenvalue problem of any elliptic operator with smooth coefficients on a bounded domain. When Ω is the n-sphere, the eigenfunctions of the Laplacian are the spherical harmonics.

Vector Laplacian[edit]

The vector Laplace operator, also denoted by , is a differential operator defined over a vector field.[6] The vector Laplacian is similar to the scalar Laplacian; whereas the scalar Laplacian applies to a scalar field and returns a scalar quantity, the vector Laplacian applies to a vector field, returning a vector quantity. When computed in orthonormal Cartesian coordinates, the returned vector field is equal to the vector field of the scalar Laplacian applied to each vector component.

The vector Laplacian of a vector field is defined as This definition can be seen as the Helmholtz decomposition of the vector Laplacian.

InCartesian coordinates, this reduces to the much simpler form as where , , and are the components of the vector field , and just on the left of each vector field component is the (scalar) Laplace operator. This can be seen to be a special case of Lagrange's formula; see Vector triple product.

For expressions of the vector Laplacian in other coordinate systems see Del in cylindrical and spherical coordinates.

Generalization[edit]

The Laplacian of any tensor field ("tensor" includes scalar and vector) is defined as the divergence of the gradient of the tensor:

For the special case where is a scalar (a tensor of degree zero), the Laplacian takes on the familiar form.

If is a vector (a tensor of first degree), the gradient is a covariant derivative which results in a tensor of second degree, and the divergence of this is again a vector. The formula for the vector Laplacian above may be used to avoid tensor math and may be shown to be equivalent to the divergence of the Jacobian matrix shown below for the gradient of a vector:

And, in the same manner, a dot product, which evaluates to a vector, of a vector by the gradient of another vector (a tensor of 2nd degree) can be seen as a product of matrices: This identity is a coordinate dependent result, and is not general.

Use in physics[edit]

An example of the usage of the vector Laplacian is the Navier-Stokes equations for a Newtonian incompressible flow: where the term with the vector Laplacian of the velocity field represents the viscous stresses in the fluid.

Another example is the wave equation for the electric field that can be derived from Maxwell's equations in the absence of charges and currents:

This equation can also be written as: where is the D'Alembertian, used in the Klein–Gordon equation.

Generalizations[edit]

A version of the Laplacian can be defined wherever the Dirichlet energy functional makes sense, which is the theory of Dirichlet forms. For spaces with additional structure, one can give more explicit descriptions of the Laplacian, as follows.

Laplace–Beltrami operator[edit]

The Laplacian also can be generalized to an elliptic operator called the Laplace–Beltrami operator defined on a Riemannian manifold. The Laplace–Beltrami operator, when applied to a function, is the trace (tr) of the function's Hessian: where the trace is taken with respect to the inverse of the metric tensor. The Laplace–Beltrami operator also can be generalized to an operator (also called the Laplace–Beltrami operator) which operates on tensor fields, by a similar formula.

Another generalization of the Laplace operator that is available on pseudo-Riemannian manifolds uses the exterior derivative, in terms of which the "geometer's Laplacian" is expressed as

Here δ is the codifferential, which can also be expressed in terms of the Hodge star and the exterior derivative. This operator differs in sign from the "analyst's Laplacian" defined above. More generally, the "Hodge" Laplacian is defined on differential forms αby

This is known as the Laplace–de Rham operator, which is related to the Laplace–Beltrami operator by the Weitzenböck identity.

D'Alembertian[edit]

The Laplacian can be generalized in certain ways to non-Euclidean spaces, where it may be elliptic, hyperbolic, or ultrahyperbolic.

InMinkowski space the Laplace–Beltrami operator becomes the D'Alembert operator or D'Alembertian:

It is the generalization of the Laplace operator in the sense that it is the differential operator which is invariant under the isometry group of the underlying space and it reduces to the Laplace operator if restricted to time-independent functions. The overall sign of the metric here is chosen such that the spatial parts of the operator admit a negative sign, which is the usual convention in high-energy particle physics. The D'Alembert operator is also known as the wave operator because it is the differential operator appearing in the wave equations, and it is also part of the Klein–Gordon equation, which reduces to the wave equation in the massless case.

The additional factor of c in the metric is needed in physics if space and time are measured in different units; a similar factor would be required if, for example, the x direction were measured in meters while the y direction were measured in centimeters. Indeed, theoretical physicists usually work in units such that c = 1 in order to simplify the equation.

The d'Alembert operator generalizes to a hyperbolic operator on pseudo-Riemannian manifolds.

See also[edit]

Notes[edit]

  1. ^ Evans 1998, §2.2
  • ^ Ovall, Jeffrey S. (2016-03-01). "The Laplacian and Mean and Extreme Values" (PDF). The American Mathematical Monthly. 123 (3): 287–291. doi:10.4169/amer.math.monthly.123.3.287. S2CID 124943537.
  • ^ Archived at Ghostarchive and the Wayback Machine: Grinfeld, Pavel. "The Voss-Weyl Formula". YouTube. Retrieved 9 January 2018.
  • ^ Gilbarg & Trudinger 2001, Theorem 8.6
  • ^ Gilbarg & Trudinger 2001, Corollary 8.11
  • ^ MathWorld. "Vector Laplacian".
  • References[edit]

    Further reading[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Laplace_operator&oldid=1228677993#Vector_Laplacian"

    Categories: 
    Differential operators
    Elliptic partial differential equations
    Fourier analysis
    Pierre-Simon Laplace
    Harmonic functions
    Linear operators in calculus
    Multivariable calculus
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Pages using sidebar with the child parameter
    Articles with GND identifiers
    Articles with J9U identifiers
    Articles with LCCN identifiers
    Articles with NDL identifiers
     



    This page was last edited on 12 June 2024, at 15:23 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki