Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Symbol designation  





2 Phase displacement  





3 See also  





4 References  














Vector group






Deutsch
Español
فارسی
Français
Nederlands
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inelectrical engineering, a vector group, officially called a connection symbol, is the International Electrotechnical Commission (IEC) method of categorizing the high voltage (HV) windings and low voltage (LV) winding configurations of three-phase transformers. The vector group designation indicates the windings configurations and the difference in phase angle between them. For example, a star HV winding and delta LV winding with a 30-degree lead is denoted as Yd11.

The phase windings of a polyphase transformer can be connected internally in different configurations, depending on what characteristics are needed from the transformer. In a three-phase power system, it may be necessary to connect a three-wire system to a four-wire system, or vice versa. Because of this, transformers are manufactured with a variety of winding configurations to meet these requirements.

Different combinations of winding connections will result in different phase angles between the voltages on the windings. Transformers connected in parallel must have the same vector group; mismatching phase angles will result in circulating current and other system disturbances.

Symbol designation

[edit]

The vector group provides a simple way of indicating how the connections of a transformer are arranged. In the system adopted by the IEC, the vector group is indicated by a code consisting of two or three letters, followed by one or two numeric digits. The letters indicate the winding configuration as follows:

In the IEC vector group code, each letter stands for one set of windings. The high-voltage (HV) winding is designated with an uppercase letter, followed by medium- or low-voltage (LV) windings designated with a lowercase letter. The digits following the letter codes indicate the difference in phase angle between the windings, with HV winding is taken as a reference. The number is in units of 30 degrees. For example, a transformer with a vector group of Dy1 has a delta-connected HV winding and a wye-connected LV winding. The phase angle of the LV winding lags the HV by 30 degrees.

Note that the high-voltage (HV) side always comes before the low-voltage (LV) side, regardless of which is the primary winding. This means that the vector group symbol will always start with a capital letter.

Phase displacement

[edit]

Phase rotation is always counterclockwise (internationally adopted convention) and indicates multiples of 30 degree lag for low voltage winding using of the high voltage winding as the reference.

Thus 1 = 30°, 2 = 60°, 3 = 90°, 6 = 180° and 12 = 0° or 360°.

According to the IEC60076-1 standard, the notation is HV-LV in sequence. For example, a step-up transformer with a delta-connected primary and a wye-connected secondary is still labeled as 'Yd1'. The 1 indicates the LV winding lags the HV by 30 degrees.[1]

Transformers built to ANSI standards usually do not have the vector group shown on their nameplate and instead a vector diagram is given to show the relationship between the primary and other windings.

There is no technical difference between one vector group (i.e. Yd1) or another vector group with same interconnection for the windings (i.e. Yd11) in terms of performance. The only factor affecting the choice between one or the other is system phasing, i.e. whether parts of the network fed from the transformer need to operate in parallel with another source. It also matters if you have an auxiliary transformer connected to generator terminals.

See also

[edit]

References

[edit]
  1. ^ IEC 60076-1 ed3.0
  1. http://electrical-engineering-portal.com/understanding-vector-group-transformer-1

Retrieved from "https://en.wikipedia.org/w/index.php?title=Vector_group&oldid=1199193620"

Category: 
Electric transformers
Hidden categories: 
Articles needing additional references from January 2015
All articles needing additional references
 



This page was last edited on 26 January 2024, at 10:25 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki