Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Construction  





2 Plate and tube wastage in service  





3 Improved circulation  





4 Notes  





5 References  





6 External links  














Vertical cross-tube boiler







 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Vertical cross-tube boiler,

Across-tube boiler was the most common form of small vertical boiler. They were widely used, in the age of steam, as a small donkey boiler, for the independent power of winches, steam cranes etc.[1][2][3]

The boiler has the advantage of simple robust construction, in particular requiring little regular maintenance. It is relatively inefficient, which was not a serious drawback to the purposes for which it was used. However it was also of limited heating surface, thus limiting its sustained output power, compared to other boiler designs. For that reason it was rarely used when power was required continuously, such as for locomotives. However as the boiler is of relatively large internal volume relative to its power, this acts as a transient reserve of steam. Applications such as cranes only require steam intermittently, allowing the boiler to recover pressure between lifts.

Construction[edit]

A sectioned view of a cross-tube boiler. The section shows a single vertical flue or fire-tube, with two large water-tubes across the firebox beneath this.

The boiler consists of a cylindrical vertical external shell, with a large firebox inside this, filling perhaps half of the total height. A single large vertical flue or uptake leads to an external chimney. Some boilers use vertical rod stays between the firebox crown and top of the boiler shell.

The main evaporative surface is provided by a pair of large water-filled cross-tubes across this firebox and directly exposed to the radiant heat of the fire. As these tubes are large in diameter they remain mostly filled with water, rather than filling with steam,[i] and so the boiler is not classed amongst the usual water-tube boilers. These tubes are horizontal,[1] or slightly inclined[2] so as to encourage circulation in a single direction without turbulence.

As usual, there is a manhole in the upper part of the shell for internal access and inspection. The boiler may be distinguished externally from other types of vertical boiler by the additional presence of two smaller handholes, in line with the end of each tube and used for internal cleaning.

Plate and tube wastage in service[edit]

A railway-mounted steam crane, with a vertical boiler mounted at the rear of the crane platform.
Steam crane, with cross-tube boiler

Unlike fire-tube boilers, the boiler was not designed for regular maintenance; such as the re-tubing and replacement of wasted tubes as a minor event. Any pitting or grooving that did develop would be a major matter to repair, requiring the replacement of plates. In practice, the boilers were robustly constructed and operating at fairly low pressure, and so minor wastage was acceptable.

The most likely location for wastage developing was around the uptake flue, at the operating water level where activity and erosion was most severe.[2] This actually represented one of the boiler's main advantages, compared to vertical boilers with multiple fire-tubes. Erosion there took place on the thin-walled tubes and was a perennial problem.

Improved circulation[edit]

Circulation in boilers is largely due to the thermosyphon effect, which is encouraged by the vertical rise of the water-tubes. As the simple cross-tube boiler has near-horizontal tubes, circulation is poor. To improve this, designs such as the Clarke Chapman 'Tyne' boiler used steeply angled main tubes and small vertical tubes at the sides. This improved circulation, although it made washout difficult.

Notes[edit]

  1. ^ Large diameter gives a low ratio of heating surface to water volume, thus a low boiling rate.

References[edit]

  1. ^ a b Prof. William Ripper, Sheffield Univ. d.1937 (1913) [1909]. Heat Engines. Originally published in 1889 as "Steam", but later expanded to cover internal combustion engines and so re-titled. London: Longmans. pp. 196–197.{{cite book}}: CS1 maint: numeric names: authors list (link)
  • ^ a b c Milton, J. H. (1961) [1953]. Marine Steam Boilers (2nd ed.). Newnes. pp. 70–77.
  • ^ Stokers Manual ((1912 edition) ed.). Admiralty, via HMSO, via Eyre & Spottiswoode. 1901.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Vertical_cross-tube_boiler&oldid=1119856308"

    Categories: 
    Vertical boilers
    Steam boiler types
    Hidden categories: 
    CS1 maint: numeric names: authors list
    Articles with short description
    Short description matches Wikidata
    Commons category link is on Wikidata
     



    This page was last edited on 3 November 2022, at 19:47 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki