Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Structure  



1.1  Development  







2 Function  





3 Clinical significance  



3.1  Symptoms of damage  





3.2  Examination  







4 History  



4.1  Etymology  







5 See also  





6 References  





7 Additional images  





8 External links  














Vestibulocochlear nerve






العربية
Azərbaycanca
Català
Čeština
Deutsch
Eesti
Español
Euskara
فارسی
Français
Galego

Bahasa Indonesia
Italiano
עברית
Қазақша
Latina
Lietuvių
Magyar
Nederlands

Norsk bokmål
Polski
Português
Română
Русский
Српски / srpski
Srpskohrvatski / српскохрватски
Suomi
Svenska
Türkçe
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Vestibulocochlear nerve
The course and connections of the facial nerve in the temporal bone
Inferior view of the human brain, with the cranial nerves labelled.
Details
ToCochlear nerve, vestibular nerve
InnervatesHearing, balance
Identifiers
Latinnervus vestibulocochlearis
MeSHD000159
NeuroNames553
TA98A14.2.01.121
TA26307
FMA50869
Anatomical terms of neuroanatomy

[edit on Wikidata]

The vestibulocochlear nerveorauditory vestibular nerve, also known as the eighth cranial nerve, cranial nerve VIII, or simply CN VIII, is a cranial nerve that transmits sound and equilibrium (balance) information from the inner ear to the brain. Through olivocochlear fibers, it also transmits motor and modulatory information from the superior olivary complex in the brainstem to the cochlea.[1]

Structure[edit]

The vestibulocochlear nerve consists mostly of bipolar neurons and splits into two large divisions: the cochlear nerve and the vestibular nerve.

Cranial nerve 8, the vestibulocochlear nerve, goes to the middle portion of the brainstem called the pons (which then is largely composed of fibers going to the cerebellum). The 8th cranial nerve runs between the base of the pons and medulla oblongata (the lower portion of the brainstem). This junction between the pons, medulla, and cerebellum that contains the 8th nerve is called the cerebellopontine angle. The vestibulocochlear nerve is accompanied by the labyrinthine artery, which usually branches off from the anterior inferior cerebellar artery at the cerebellopontine angle, and then goes with the 7th nerve through the internal acoustic meatus to the internal ear.

The cochlear nerve travels away from the cochlea of the inner ear where it starts as the spiral ganglia. Processes from the organ of Corti conduct afferent transmission to the spiral ganglia. It is the inner hair cells of the organ of Corti that are responsible for activation of afferent receptors in response to pressure waves reaching the basilar membrane through the transduction of sound. The exact mechanism by which sound is transmitted by the neurons of the cochlear nerve is uncertain; the two competing theories are place theory and temporal theory.

The vestibular nerve travels from the vestibular system of the inner ear. The vestibular ganglion houses the cell bodies of the bipolar neurons and extends processes to five sensory organs. Three of these are the cristae located in the ampullae of the semicircular canals. Hair cells of the cristae activate afferent receptors in response to rotational acceleration. The other two sensory organs supplied by the vestibular neurons are the maculae of the saccule and utricle. Hair cells of the maculae in the utricle activate afferent receptors in response to linear acceleration, while hair cells of the maculae in the saccule respond to vertically directed linear force.

Development[edit]

The vestibulocochlear nerve is derived from the embryonic otic placode.

Function[edit]

This is the nerve along which the sensory cells (the hair cells) of the inner ear transmit information to the brain. It consists of the cochlear nerve, carrying details about hearing, and the vestibular nerve, carrying information about balance. It emerges from the pontomedullary junction and exits the inner skull via the internal acoustic meatus in the temporal bone.

The vestibulocochlear nerve carries axons of type special somatic afferent.

Clinical significance[edit]

Symptoms of damage[edit]

Damage to the vestibulocochlear nerve may cause the following symptoms:

Examination[edit]

Examinations that can be done include the Rinne and Weber tests.

Rinne's test involves Rinne's Right and Left Test, since auditory acuity is equal in both ears. If bone conduction (BC) is more than air conduction (AC) (BC>AC) indicates Rinne Test is negative or abnormal. If AC>BC Rinne test is normal or positive. If BC>AC and Weber's test lateralizes to abnormal side then it is Conductive hearing loss. If AC>BC and Weber's test lateralizes to normal side then it concludes Sensorineural hearing loss.

After pure-tone testing, if the AC and BC responses at all frequencies 500–8000 Hz are better than 25 dB HL, meaning 0-24 dB HL, the results are considered normal hearing sensitivity. If the AC and BC are worse than 25 dB HL at any one or more frequency between 500 and 8000 Hz, meaning 25+, and there is a no bigger difference between AC and BC beyond 10 dB at any frequency, there is a sensori-neural hearing loss present. If the BC responses are normal, 0-24 dB HL, and the AC are worse than 25 dB HL, as well as a 10 dB gap between the air and bone responses, a conductive hearing loss is present. {updated March 2019}

The modified Hughson–Westlake method is used by many audiologists during testing. A battery of (1) otoscopy, to view the ear canal and tympanic membrane, (2) tympanometry, to assess the immittance of the tympanic membrane and how well it moves, (3) otoacoustic emissions, to measure the response of the outer hair cells located in the cochlea, (4) audiobooth pure-tone testing, to obtain thresholds to determine the type, severity, and pathology of the hearing loss present, and (5) speech tests, to measure the patients recognition and ability to repeat the speech heard, is all taken into consideration when diagnosing the pathology of the patient.

History[edit]

Etymology[edit]

Some older texts call the nerve the acousticorauditory nerve,[3] but these terms have fallen out of widespread use because they fail to recognize the nerve's role in the vestibular system. Vestibulocochlear nerve is therefore preferred by most.

See also[edit]

References[edit]

  1. ^ Lopez-Poveda, Enrique A. (26 March 2018). "Olivocochlear Efferents in Animals and Humans: From Anatomy to Clinical Relevance". Frontiers in Neurology. 9: 197. doi:10.3389/fneur.2018.00197. PMC 5879449. PMID 29632514.
  • ^ Coad, ML; Lockwood, A; Salvi, R; Burkard, R (2001). "Characteristics of patients with gaze-evoked tinnitus". Otology & Neurotology. 22 (5): 650–4. doi:10.1097/00129492-200109000-00016. PMID 11568674. S2CID 44391826.
  • ^ "IX. Neurology. 5h. The Acoustic Nerve. Gray, Henry. 1918. Anatomy of the Human Body". www.bartleby.com. 20 October 2022.
  • Additional images[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Vestibulocochlear_nerve&oldid=1230205303"

    Categories: 
    Vestibulocochlear nerve
    Cranial nerves
    Otorhinolaryngology
    Human head and neck
    Nervous system
    Neurology
    Nerves of the head and neck
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Commons category link is on Wikidata
    Articles with GND identifiers
    Articles with J9U identifiers
    Articles with LCCN identifiers
    Articles with NKC identifiers
    Articles with TA98 identifiers
     



    This page was last edited on 21 June 2024, at 10:25 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki