Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Introduction  





2 Camber adjustment  





3 Comparison with conventional sailing rigs  



3.1  Points of sail  







4 References  





5 External links  














Wingsail






Català
Español
Bahasa Melayu
Polski
Português
Slovenščina
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


BMW Oracle Racing USA 17 from the 2010 America's Cup, with a rigid mainsail wingsail, and a conventional jib at the fore
Forces on a wing (green = lift, red = drag).

Awingsail, twin-skin sail[1]ordouble skin sail[2] is a variable-camber aerodynamic structure that is fitted to a marine vessel in place of conventional sails. Wingsails are analogous to airplane wings, except that they are designed to provide lift on either side to accommodate being on either tack. Whereas wings adjust camber with flaps, wingsails adjust camber with a flexible or jointed structure (for hard wingsails). Wingsails are typically mounted on an unstayed spar—often made of carbon fiber for lightness and strength. The geometry of wingsails provides more lift, and a better lift-to-drag ratio, than traditional sails. Wingsails are more complex and expensive than conventional sails.[3]

Introduction

[edit]
The top of the wing of an Oracle AC45 racing catamaran

Wingsails are of two basic constructions that create an airfoil, "soft" and "hard", both mounted on an unstayed rotating mast.[4] Whereas hard wingsails are rigid structures that are stowed only upon removal from the boat, soft wingsails[5][6] can be furled or stowed on board.[4]

L. Francis Herreshoff pioneered a precursor rig that had jib and main, each with a two-ply sail with leading edges attached to a rotating spar. The C Class Catamaran class has been experimenting and refining wingsails in a racing context since the 60s. Englishman, John Walker, explored the use of wingsails in cargo ships and developed the first practical application for sailing yachts in the 1990s. Wingsails have been applied to small vessels, like the Optimist dinghy and Laser, to cruising yachts, and most notably to high-performance multihull racing sailboats, like USA-17. The smallest craft have a unitary wing that is manually stepped. Cruising rigs have a soft rig that can be lowered, when not in use. High-performance rigs are often assembled of rigid components and must be stepped (installed) and unstepped by shore-side equipment.[3]

Camber adjustment

[edit]
Cross section of an aerofoil showing camber line.

Wingsails change camber (the asymmetry between the top and the bottom surfaces of the aerofoil), depending on tack and wind speed.[7][page needed] A wingsail becomes more efficient with greater curvature on the downwind side. Since the windward side changes with each tack, so must sail curvature change. This happens passively on a conventional sail, as it fills in with wind on each tack. On a wingsail, a change in camber requires a mechanism. Wingsails also change camber to adjust for windspeed. On an aircraft, flaps increase the camber or curvature of the wing, raising the maximum lift coefficient—the lift a wing can generate—at lower air speeds (speed of the air passing over it). A wingsail has the same need for camber adjustment, as windspeed changes—a straighter camber curvature as windspeed increases, more curved as it decreases.[3]

Mechanisms for camber adjustment are similar for soft and hard wingsails. Each employs independent leading and trailing airfoil segments that are adjusted independently for camber. More sophisticated rigs allow for variable adjustment of camber with height above the water to account for increased windspeed.[3][8]

Comparison with conventional sailing rigs

[edit]

The presence of rigging, supporting the mast of a conventional fore-and-aft rig limits sail geometry to shapes that are less efficient than the narrow chord of the wingsail. However, conventional sails are simple to adjust for windspeed by reefing. Wingsails typically are a fixed surface area. Conventional sails can be furled easily; some flexible wingsails can be dropped, when not in use; rigid wingsails must be removed when exposure to wind is undesirable.[3]

Points of sail

[edit]

Nielsen summarised the efficiencies of wingsails, compared with conventional sails, for different points of sail, as follows:[3]

References

[edit]
  1. ^ Reed, Dave (August 27, 2019). "Intel on the AC75's Twin-Skin Main". Sailing World. Retrieved 2020-12-28.
  • ^ Griffin, Jack (August 27, 2018). "AC75 Double Luff Mainsail". www.sail-world.com. Retrieved 2020-12-28.
  • ^ a b c d e f Nielsen, Peter (May 14, 2014). "Have Wingsails Gone Mainstream?". Sail. Retrieved 2015-01-24.
  • ^ a b Nielsen, Peter (August 2, 2017). "Have Wingsails Gone Mainstream?". Sail Magazine. Retrieved 2021-03-24.
  • ^ Heppell, Toby (2021-02-26). "America's Cup: Our analysis of INEOS' development". Yachting World. Retrieved 2021-03-24.
  • ^ Reynolds, Pat (2016-01-13). "What's In A Rig? - Wingsail". American Sailing Association. Retrieved 2021-03-24.
  • ^ Houghton, E. L.; Carpenter, P. W. (2003). Butterworth Heinmann (ed.). Aerodynamics for Engineering Students (5th ed.). ISBN 0-7506-5111-3.
  • ^ Widnall, Sheila; Cornwell, Hayden; Williams, Peter (2014). "Effects of Spanwise Flexibility on Lift and Rolling Moment of a Wingsail". Widnall. Massachusetts Institute of Technology Department of Aeronautics and Astronautics. hdl:1721.1/92344.
  • [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Wingsail&oldid=1177547961"

    Categories: 
    Marine propulsion
    Sailboat components
    Sailing rigs and rigging
    Wind-powered vehicles
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Wikipedia articles needing page number citations from October 2016
    Commons category link is on Wikidata
     



    This page was last edited on 28 September 2023, at 02:22 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki