Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Description  





2 XFI  





3 Mechanical dimensions  





4 Types  





5 See also  





6 References  














XFP transceiver






Español
Français
Polski
Русский

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Intel XFP Transceiver (MultiMode Fiber Optics)

The XFP (10 gigabit small form-factor pluggable) is a standard for transceivers for high-speed computer network and telecommunication links that use optical fiber. It was defined by an industry group in 2002, along with its interface to other electrical components, which is called XFI.

XFP is a slightly larger form factor than the popular small form-factor pluggable transceiver, SFP and SFP+.

Description[edit]

XFP modules are hot swappable and support multiple physical layer variants. They typically operate at near-infrared wavelengths (colors) of 850 nm, 1310 nm or 1550 nm. XFP modules use an LC fiber connector type to achieve higher density.

Principal applications include 10 Gigabit Ethernet, 10 Gbit/s Fibre Channel, synchronous optical networking (SONET) at OC-192 rates, synchronous optical networking STM-64, 10 Gbit/s Optical Transport Network (OTN) OTU-2, and parallel optics links. They can operate over a single wavelength or use dense wavelength-division multiplexing techniques. They include digital diagnostics that provide management that were added to the SFF-8472 standard.[1][failed verification]

The XFP specification was developed by the XFP Multi Source Agreement Group. It is an informal agreement of an industry group, not officially endorsed by any standards body. The first preliminary specification was published on March 27, 2002. The first public release was on July 19, 2002. It was adopted on March 3, 2003, and updated with minor updates through August 31, 2005.[2]

The chair of the XFP group was Robert Snively of Brocade Communications Systems, and technical editor was Ali Ghiasi of Broadcom.[2] The organization's web site was maintained until 2009.[3]

XFI[edit]

The XFI electrical interface specification is a 10 gigabit per second chip-to-chip electrical interface specification defined as part of the XFP multi-source agreement. It was also developed by the XFP MSA group. XFI is sometimes pronounced as "X" "F" "I" and other times as "ziffie".

XFI provides a single lane running at 10.3125 Gbit/s when using a 64B/66B encoding scheme. A serializer/deserializer is often used to convert between XFI and a wider interface such as XAUI that has four lanes running at 3.125 Gbit/s using 8B/10B encoding.

Mechanical dimensions[edit]

A10 Gigabit Ethernet XFP transceiver and a SFP+ transceiver side by side.

The physical dimensions of the XFP transceiver are slightly larger than the original small form-factor pluggable transceiver (SFP). One of the reasons for the increase in size is to allow for on-board heat sinks for more cooling.[citation needed]

Dimensions
XFP[2] SFP (for comparison)[4]
Height 8.5 mm (0.33 inches) 8.5 mm (0.33 inches)
Width 18.35 mm (0.72 inches) 13.4 mm (0.53 inches)
Depth 78.0 mm (3.10 inches) 56.5 mm (2.22 inches)

Types[edit]

XFP are available with a variety of transmitter and receiver types, allowing users to select the appropriate transceiver for each link to provide the required optical reach over the available optical fiber type (e.g. multi-mode fiberorsingle-mode fiber). XFP modules are commonly available in several different categories:[citation needed]

The XFP packaging was smaller than the XENPAK form-factor which had been published earlier (by almost a year).[5] Some vendors supported both, or the XENPAK follow-ons called XPAK and X2.[6]

See also[edit]

References[edit]

  1. ^ "SFF-8472 Specification for Diagnostic Monitoring Interface for Optical Transceivers Rev 11.0" (PDF). Small Form Factor Committee. September 14, 2010. Retrieved June 16, 2011.
  • ^ a b c "INF-8077i: 10 Gigabit Small Form Factor Pluggable Module". Small Form Factor Committee. August 31, 2005. Retrieved 2018-02-18.
  • ^ "About the 10 Gigabit Small Form Factor Pluggable (XFP) Multi Source Agreement (MSA) Group". 2009. Archived from the original on May 1, 2009. Retrieved June 16, 2011.
  • ^ INF-8074i Specification for SFP (Small Formfactor Pluggable) Transceiver (PDF), SFF Committee, May 12, 2001, p. 6
  • ^ "INF-8474i Specification for Xenpak 10 Gigabit Ethernet Transceiver Rev 3.0" (PDF). Small Form Factor Committee. September 18, 2002. Retrieved June 16, 2011.
  • ^ John Walko (November 19, 2002). "Intel pushes optical comps for all transceiver MSAs". EE Times. Retrieved June 16, 2011.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=XFP_transceiver&oldid=1220793888"

    Categories: 
    Fiber-optic communications
    Hot-swappable transceiver
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    All articles with failed verification
    Articles with failed verification from September 2021
    All articles with unsourced statements
    Articles with unsourced statements from October 2021
    Articles with unsourced statements from November 2018
     



    This page was last edited on 25 April 2024, at 23:21 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki