コンパクト空間

位相空間の性質の一つ
数学 > 位相空間 > コンパクト空間

: compact, /kəmˈpækt/[1]

使

XYYXYX: relatively compact

: quasi-compact

概要

編集

動機

編集

 X

X 

X 

X f 




 


  

(一)

(二)

(三)

323使


23232

2種類の同値な定義

編集

コンパクトの概念は以下に述べる同値な2性質の少なくとも一方(したがって両方)を満たす事により定義される。

ボルツァーノ・ワイエルシュトラス性による定式化

編集

1() 

XX[1]

X[2]

ハイネ・ボレル性による定式化

編集

コンパクトを特徴づける2つ目の性質(前述のようにこれはボルツァーノ・ワイエルシュトラス性と同値)はハイネ・ボレル性といい、これは の有界閉集合に対するハイネ・ボレルの被覆定理の結論部分に相当する性質である。

ハイネ・ボレル性は非常に抽象的な性質なので、その詳細は後の章に譲るが、コンパクトな空間に対する定理を証明する際、無限に伴う証明の困難さを回避するのにこの性質を用いる事ができる。なお、学部レベルの教科書ではハイネ・ボレル性の方をコンパクトの定義として採用しているものが多い。

距離空間における特徴づけ

編集

X2XXε>0Xε-X


ベクトル空間における特徴づけ

編集

  XX

  VVVVV*V*V*

ボルツァーノ・ワイエルシュトラス性によるコンパクトの定義

編集

すでに述べたようにコンパクト性には2種類の同値な定義がある。本章ではこの2つの定義のうち、ボルツァーノ・ワイエルシュトラス性による定義について述べる。

有向点族

編集

本節ではボルツァーノ・ワイエルシュトラス性の定式化に必要な概念である有向点族の概念を導入する。有向点族とは有向集合を添え字とする族である:


 ()  ΛΛ  (Λ, ): directed set [2]:

λΛ : λ λ

λ,μ,νΛ : λ  μ, μ ν  λ  ν

Λλ,μΛνΛ : λ  ν, μ ν

XX(xλ)λΛΛ[2][3] (: net) Moore-Smith (: Moore-Smith sequence[3])generalized sequence[3]

 




定義

編集

定義 (ボルツァーノ・ワイエルシュトラス性によるコンパクトの定義) ―  位相空間 が以下の性質を満たすとき、 コンパクトであるという[4]

  • (有向点族に対するボルツァーノ・ワイエルシュトラス性) X上の任意の有向点族 に対し、 のある部分有向点族 xXが存在し、 xXに収束する

上記の定義は、 上の有界閉集合に関するボルツァーノ・ワイエルシュトラスの定理の結論部分を有向点族に自然に拡張したものである:

定理 (ボルツァーノ・ワイエルシュトラスの定理) ―   が有界閉集合であるとき、X上の任意の点列は収束する部分列を持つ。

なお、コンパクトの定義において、元々のボルツァーノ・ワイエルシュトラスの定理と同様、有向点族ではなく点列に対してのみ収束部分列を要求したものを点列コンパクト性と呼ぶが、点列コンパクト性は距離空間においてはコンパクト性と同値(より一般的に擬距離空間でも同値)であるものの、無条件にはこの同値性は成立しない。点列コンパクト性に関する詳細は後述する。

ハイネ・ボレル性によるコンパクト性の定義

編集

次にコンパクトの概念を全く違う角度から特徴づける。この特徴付けの基盤となるのは の有界閉集合に対するハイネ・ボレルの被覆定理である。そこでまず、この定理の記述に必要な概念を定義する。


 ()     X

 

 X  X(: open cover)

定義

編集

コンパクト性の概念は以下のように特徴づける事ができる:

定義 (ハイネ・ボレル性によるコンパクトの定義) ― 位相空間 が以下の性質を満たすとき コンパクトであるという[4]

  • (ハイネ・ボレル性) Xの任意の開被覆 に対し、 のある有限部分集合 が存在し、 Xを被覆する[4]

定理 (2つの定義が同値であること) ― ハイネ・ボレル性によるコンパクトの定義はボルツァーノ・ワイエルシュトラス性によるコンパクトの定義と同値である[4]

上述の定義における の事を 有限部分被覆という。

もともとのハイネ・ボレルの定理は以下のように記述できる:

定理 (ハイネ・ボレルの被覆定理) ―  の部分集合Xが有界閉集合であれば、( から誘導される部分位相に関して)ハイネ・ボレル性によるコンパクトの定義を満たす。

後述するように、実は逆向きも成立する事が知られているので、 においてはコンパクト性は有界閉集合である事と同値である。なお、一般の距離空間では「コンパクト部分集合⇒有界閉集合」は言えるが逆向きは成立するとは限らない。

有限交差性

編集

ハイネ・ボレル性による定義における「開集合」の補集合を取って「閉集合」とし、さらに対偶を取る事で、コンパクト性の以下の特徴づけが得られる:

定義 ―  を位相空間とし、Xの閉集合の任意の集合 が以下の性質を満たすとき、 有限交差性を満たすという:

  •  の任意の有限部分集合 が、 を満たす。

定理 (有限交差性によるコンパクトの特徴づけ) ―  がコンパクトである必要十分条件は以下の性質が成立する事である[4]

  • Xの閉集合の任意の集合 が有限交差性を満たせば が成立する。

この条件は区間縮小法の一般化になっているとみなすことができ、位相空間における存在証明に重要な役割を果たす。

利用例

編集

Xx X   

使

定理 (ハイネ・カントールの定理) ― 距離空間XYに対し、Xがコンパクトであれば、X上定義された任意の連続関数 は一様連続である


fε>0Xxδx-  yε-

 x  δx  δ

 

xδ0

使  

 

 δ>0

 Xx  X xi

 

  

それ以外の特徴づけ

編集

コンパクト性は、有向点族と本質的に同値な概念であるフィルターの収束によっても特徴づけられる。また普遍有向点族やその対応概念である超フィルターを用いても特徴づける事ができる。これまでに述べて特徴づけも含め、こうしたコンパクト性の様々な特徴づけを列挙する


 ()   

X

X 

X

X

X

X

X

X

性質

編集

閉集合

編集

コンパクトな位相空間の部分集合に関し、以下が言える:

  • コンパクト空間の部分集合が閉集合ならコンパクトである。
  • ハウスドルフの分離公理を満たす位相空間のコンパクト部分集合は閉集合である。

したがってコンパクトかつハウスドルフな位相空間(コンパクトハウスドルフ空間)では部分集合Aが閉集合である事とAがコンパクトである事は同値である。

コンパクト性の遺伝

編集
  • コンパクト空間から位相空間への連続写像の像はコンパクト集合である。
  • (有限個または無限個の)コンパクト空間の直積はコンパクトである。(チコノフの定理。この定理はZF のもとで選択公理と同値である[5]

その他

編集
  • コンパクト空間からハウスドルフ空間への連続な全単射写像は同相写像である。
  • コンパクト空間から実数体への連続関数は一様連続である。(ここから連続関数がリーマン可積分であることが言える)
  • コンパクトハウスドルフなら正規[6]

距離空間におけるコンパクトの特徴づけ

編集

X距離空間であれば、コンパクト性をまた別の方法で特徴づける事ができる。まずは結論となる定理を提示し、それから定理の記述に必要な概念を順に導入する。

定理 (距離空間におけるコンパクト性の特徴づけ[7]) ―  X を距離空間とするとき以下の3つは同値である。

  1. X はコンパクトである。
  2. X全有界かつ完備である。
  3. X は点列コンパクトである。

定理の記述に必要な諸概念

編集

全有界性

編集

距離空間Xが全有界であるとは任意の ε > 0 に対し、X を半径 ε の有限個の開球で被覆する事ができる事を指す:


 ()   X: totally bounded: precompact ε > 0 X   

 

 xε- 

全有界性は以下のようにも特徴づけられる事が知られている:

定理2 ― 距離空間Xが全有界である必要十分条件は以下を満たす事である: X上の任意の点列に対しある部分列が存在し、その部分列はコーシー列である[8]

完備性

編集

定義 ―  距離空間 X完備であるとは X 上のコーシー列は必ず収束する事を指す。

詳細は完備距離空間の項目を参照されたい。

点列コンパクト

編集

位相空間が点列コンパクトとは、一般の有向集合ではなく点列に対してのみボルツァーノ・ワイエルシュトラス性が保証される事を意味する[注 4]


    XX  X          X


コンパクトと点列コンパクトの同値性は擬距離空間でも成立するが、無条件には成立しない。点列コンパクト性に関する詳細は後述する。

有限次元ベクトル空間におけるコンパクト性

編集

距離空間においてはコンパクト性と「全有界かつ完備」が同値になる事をユークリッド空間に適用すると、以下の系が従う:

 ― 有限次元のユークリッド空間(あるいはより一般に完備リーマン多様体)の部分集合 A がコンパクトである必要十分条件は A が有界閉集合である事である。

より正確に言うと有限次元のユークリッド空間や完備リーマン多様体の部分集合に対しては、有界性と全有界性が同値であり、完備性と閉集合である事が同値である。これらの事実は簡単に証明できる。

一様空間への一般化

編集

コンパクト性と「全有界かつ完備」が同値になる事は距離空間よりも一般的な一様空間でも成立する:

定理 (一様空間におけるコンパクト性の特徴づけ) ―  X を一様空間とするとき以下の3つは同値である。

  1. X はコンパクトである。
  2. X全有界かつ完備である。

一様空間の定義は当該項目を参照されたい。一様空間における全有界性と完備性は以下のように定義される:


 ()   DXD 

1 (: totally bounded)(: precompact)[9][10]

 FX 

dDε>0XF 

X

定義 (一様空間の完備性) ―  距離空間 X完備であるとは X 上の任意のコーシー有向点族が少なくとも1つ極限を持つ事をいう。

上で「少なくとも1つ極限を持つ」という言い方をしているのは、 が定める位相構造がハウスドルフでない限り、有向点族の収束の一意性は保証されないからである。

Niemytzki-Tychonovの定理

編集

擬距離化可能空間においてコンパクト性は以下のようにも特徴づける事ができる:

定理 (Niemytzki-Tychonovの定理) ― Xを擬距離化可能な位相空間とするこのときXがコンパクトである必要十分条件は、X上の任意の擬距離d(でその擬距離の定める位相がXの位相と一致するもの)に対し、擬距離空間 が完備である事である[11]

無限次元空間におけるコンパクト性

編集

すでに述べたように、有限次元ベクトル空間やより一般に有限次元の完備リーマン多様体の部分集合に対してはコンパクト性は有界閉集合と等しい。一方無限次元の空間の場合は、どのような空間にどのような位相を入れるかにより結論が異なる。

無限次元ベクトル空間

編集

ノルムから位相を入れた場合

編集

ノルムから位相を入れたベクトル空間(ノルム空間)に対してはリースの補題から直接的に次の事実が従う:

命題 ―  もしくは 上のノルム空間Vの閉単位球がコンパクトである必要十分条件はVが有限次元である事である。



2

 

2

 



 





 

δn,k

  for nm

  

 

 

2BB  for nm ε ε-ε-

*弱位相の場合

編集

一方、無限次元空間であってもノルムから定まる位相以外の位相に関しては閉単位球がコンパクトになる事もある:

定理 (バナッハ・アラオグルの定理) ― K もしくは とする。このときK上のノルム空間V双対空間V*に*弱位相を入れると、(Vが無限次元であっても)V*の閉単位球はコンパクトである。


VV*VKx  V

 

μxV*V*


 ― V*に*弱位相を入れた空間の有界閉集合はコンパクト


VV[12]

V*

コンパクト空間の直積

編集

本節では位相空間の(有限個または無限個の)直積には2種類の位相が入り、コンパクト空間の無限個の直積に前者の位相を入れた場合はコンパクトになるが、後者の位相を入れた場合はそうなるとは限らない事を見る。

直積位相と箱型積位相

編集

 を位相空間の族するとき、 には以下の2種類の位相が入る。


 ()   

 

 [13]

これら2つの位相は有限個の直積 を考えている場合は同一であるが、無限積を考えた場合には箱型積位相のほうが直積位相よりも強い(弱くない)位相になる。これを見るために直積位相を具体的に書き表すと、以下のようになる事が知られている:

定理 ― 上の定義と同様に記号を定義するとき、 直積位相は

 , 有限個のλを除いて 

を開基とする。


Λλ  ()  

 



 


チコノフの定理

編集

コンパクト空間の(有限個または無限個の)直積に直積位相位相を入れたものはコンパクトである:

定理 (チコノフの定理) ―  をコンパクトな位相空間の族とする。このとき直積 に直積位相を入れたものはコンパクトである。


(ZF)[14]

    

  

 

 

コンパクト化

編集

X  XX  X調() XX 調 X K

関連概念とその関係性

編集

コンパクト性は位相空間論における重要概念の一つなので、コンパクト性の定義を拡張したり修正したりした概念が複数存在する。本節ではこうした概念を紹介し、それらの関係性を述べる。

可算コンパクト、点列コンパクト、擬コンパクト

編集

これらの概念は以下のように定義される。点列コンパクトの定義は前の章ですでに述べたがが再掲している:

名称 名称(英語) 定義
可算コンパクト countably compact space Xの任意の可算開被覆 は有限部分開被覆 を持つ。ここでX可算開被覆 とは開被覆で可算集合であるものをいう。
点列コンパクト sequentially compact space X 上の任意の点列は収束部分列を持つ事を指す。すなわち X 上の任意の点列   に対し適当な部分列   を取れば  X 上のいずれかの点に収束する事を指す。点列コンパクト性の事を点列に対するボルツァーノ・ワイエルシュトラス性とも言う。
擬コンパクト pseudocompact Xから実数体への連続関数 f が必ず有界となる

これらの概念は以下の関係性を満たす:

定理 ― コンパクト⇒点列コンパクト⇒可算コンパクト⇒擬コンパクト[15]

擬距離化可能な空間ではこれら4つの概念は同値である:

定理 (擬距離化可能空間における同値性) ―  を位相空間とする。 Xが擬距離化可能空間であれば、コンパクト、可算コンパクト、点列コンパクト、擬コンパクトは同値[16]

Xが擬距離化可能とは限らない場合はこれらは同値とは限らないが、以下のような関係を満たす:


   

XX[17]

X[18]

局所コンパクト、σ-コンパクト、リンデレーフ、パラコンパクト、メタコンパクト

編集

これらは以下のように定義される:

名称 名称(英語) 定義
局所コンパクト locally compact Xの任意の点がコンパクトな近傍を持つ事。
σ-コンパクト(しぐま-) σ-compact space Xは可算個のコンパクト集合の和集合として書ける
リンデレーフ Lindelöf space X の任意の開被覆は可算部分被覆を持つ
パラコンパクト paracompact Xはハウスドルフであり、Xの任意の開被覆は局所有限な細分を持つ[19]。ここで X の被覆 が被覆 細分(: refinement)であるとは、 の任意の元Tに対して の元Sが存在してTSを満たす事を言う[20]。またX の被覆 局所有限(: locally finite)であるとは、任意のxXに対し、xの近傍Nが存在し、 となる が有限個しかない事を指す[20]
メタコンパクト metacompact X の任意の開被覆はpoint finiteな細分を持つ。ここで被覆 point finiteであるとは任意のxXに対し、xTとなる が有限個である事を言う[21]

σ-コンパクトの定義に関して留意点を述べる。σ-コンパクトは局所コンパクトと違い、コンパクトな近傍(すなわち内点を持つ集合)である事を要求されていない。これが原因でσ-コンパクトであっても局所コンパクトではない事があり得る。例えば有理数の集合 は一点集合(これはコンパクトである)の可算和で書けるのでσ-コンパクトだが、 の各点のいかなる近傍も距離空間として完備でないのでコンパクトではなく、よって は局所コンパクトではない。

関係性

編集

以上の概念は以下の関係性を満たす:


 ()   

X[22]

X[23]

Xσ[24]

Xσ-[25]

X[25]

X[19]

XT1[26]

パラコンパクト

編集

Kelly

[19]

定理 (パラコンパクトの特徴づけ) ―  を正則な位相空間とするとき、下記の条件は全て同値である[19][注 6]

  • Xはパラコンパクト
  • Xの任意の開被覆は局所有限で開な細分を持つ
  • Xの任意の開被覆は局所有限で閉な細分を持つ

ここで細分が開であるとは細分が開被覆になっている事を意味する。同様に細分が閉であるとは細分が被覆になっている事を意味する。上記の定理はパラコンパクトな空間において開被覆が単に局所有限な細分を持つだけでなく、局所有限でしかも開な細分や閉な細分を持つ事を保証している。

コンパクト性は開被覆が、(開な)部分被覆を持つ事を保証しているので、パラコンパクトな空間において開で局所有限な細分が保証される事は、コンパクト性において成り立っている議論をパラコンパクト性に拡張する際に有益である。

パラコンパクトな空間の重要な性質の一つとして、開被覆に従属する1の分割の存在が保証されるというものがある。この事実を述べるためにまず1の分割の定義、およびそれが開被覆と両立する事の定義を述べる:

定義 (1の分割) ―  を位相空間とする。X上の1の分割(: partition of unity)とは(fα)αAXから[0,1]区間への連続関数

 

で、以下の2性質を満たすものを言う[27]

  1. 集合族 は局所有限
  2. 任意のxXに対し、 

1(: support)

 

121xX(fα)αA

 (1)    X(fα)αAX1

αAτB (fα)αA (: subordinate)[27]

A=BαA=B (fα)αA (: precisely subordinate)[27]

パラコンパクトな空間は開被覆に従属する1の分割で特徴づけられる:


 (1)   [28][7]

X

X  1

X  1

脚注

編集

注釈

編集


(一)^ 

(二)^ 

(三)^ (Λ,)ΛXx : ΛXΛ

(四)^ 

(五)^ XX xX  x   xXx

(六)^ #Schechter p.449preregular

(七)^ #Schechter p.449.preregular(p.439-440)preregular

出典

編集


(一)^ Cambridge English Dictionary. 2021119

(二)^ ab#Kelly pp.65-66.

(三)^ ab#Schechter 7.6

(四)^ abcde#Kelly pp.135-136.

(五)^ #Schechter p.461.

(六)^ #Kelly p.141.

(七)^ # p.146

(八)^ # pp.145-146. X    X

(九)^ #Kelly p.198.

(十)^ #Schechter pp.505-506.

(11)^ #Schechter p.507

(12)^ #Heil p.3.

(13)^ # p.95

(14)^ # p.118.

(15)^ #Schechter p.468#Kelly p.162xX xN n#Kelly p.71[5]

(16)^ #Schechter p.470

(17)^ #Kelly p.162.

(18)^ #Schechter p.468

(19)^ abcd#Kelly pp.156-161.

(20)^ ab#Kelly pp.126,128.

(21)^ #Kelly p.171.

(22)^ #WillardTheorem 16.9, p. 111

(23)^ #WillardTheorem 16.11, p. 112

(24)^ #p. 86.

(25)^ ab#Kelly p.172.

(26)^ Kelly p.171.

(27)^ abc#Schechter p.445.

(28)^ #Schechter p.449.

参考文献

編集

John L. Kelly (1975/6/27). General Topology. Graduate Texts in Mathematics (27). Springer-Verlag. ISBN 978-0387901251 
KindleASIN : B06XGRCCJ3

L.  ︿197971ISBN 978-4842701318 

︿1986115ISBN 978-4785314019 

Eric Schechter (1997/1/15). Handbook of Analysis and its Foundations. Academic Press. ISBN 978-0126227604 

Stephen WillardGeneral TopologyDover Publications2004ISBN 0-486-43479-6 

 (2008). . 5 (37 ed.). . ISBN 978-4-7853-1305-0 

Christopher E. Heil. Alaoglu's Theorem. LECTURE NOTES, MATH 6338 (Real Analysis II), Summer 2008. Georgia Institute of Technology. 2021322

関連項目

編集