: pyruvate kinasePEPADP11ATP[1][2]4
Pyruvate kinase
ピルビン酸キナーゼの立体構造 (PDB: 1PKN​)
識別子
EC番号 2.7.1.40
CAS登録番号 9001-59-6
データベース
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB構造 RCSB PDB PDBj PDBe PDBsum
遺伝子オントロジー AmiGO / QuickGO
検索
PMC articles
PubMed articles
NCBI proteins
テンプレートを表示

脊椎動物のアイソザイム

編集

LRM1M24LRPKLRM1M2PKMLR2RPEP-1,6-FBPTATP[3]M2PEPPKM2PKM2調[4]

PKM1211PKM1PKM2PKM19PKM210C5637843423[5][6]PKMhnRNPA1hnRNPA2hnRNP調[7]PKM2531ABCPKM1PKM2PKM2FBP調調PKM1[8]

細菌のアイソザイム

編集

Escherichia coliPykAPykF237%Uniprot: PykA, PykFADPPEPATPPykFFBP調PykF[9]PykF調CraFruR調[10][11][12]

反応

編集

解糖系

編集

2PEPADPATP[13]ATP1[14]
 
PEPADP11ATP

YPKPEPFBPMg2+Mg2+PEPMn2+YPK[15]

31調ATPADP調[16]ATPTCA

糖新生

編集

調[16][16]調[16]

調節

編集

-6-PEPADP3調3調[16]調調-1,6-FBP

アロステリックエフェクター

編集

調調FBPATP[17]FBPL-[18][19][20]

フルクトース-1,6-ビスリン酸

編集

FBP調FBP-6-FBPC[21]FBPFBPFBP調[9][22]

共有結合修飾

編集

調[23]APKAPKA1PP1調[24]

ホルモンによる制御

編集

調cAMPcAMP調[25]

メトホルミンによる阻害効果

編集

メトホルミン(ジメチルビグアニド)は2型糖尿病の第一選択薬として利用されている。メトホルミンは糖新生の阻害を介して間接的にピルビン酸キナーゼに影響を与えることが示されている。具体的には、メトホルミンはさまざまな代謝経路におけるグルコースフラックスの顕著な低下と乳酸/ピルビン酸フラックスの増加と関連している。メトホルミンはピルビン酸キナーゼの活性に直接影響を与えるわけではないが、ATP濃度の低下を引き起こす。ATPはピルビン酸キナーゼにアロステリックな阻害効果を持つため、ATPの減少はピルビン酸キナーゼの阻害を弱め、ピルビン酸キナーゼを刺激する。ピルビン酸キナーゼ活性の増加は代謝フラックスを糖新生ではなく解糖系へ変化させる[26]

遺伝子調節

編集

ChREBPLChREBPcAMP調ChREBPcAMPcAMPcAMPChREBPSer196Thr666LChREBPSer196Thr666LcAMP調[27]

hnRNPPKMM1M2調PKM1PKM2PKM1hnRNPA1hnRNPA2hnRNPPKM2調[28]PKM2T3PKM2[29]

臨床的意義

編集

欠乏症

編集
 
赤血球の異常の分布

/TCAATPCNSHA[30]

PKLR遺伝子変異

編集

PKLRPKM2PKLR250PKLRDNA1PKLR[31]

阻害

編集

活性酸素種による阻害

編集

ROSROSM2PKM2ROSCys358PKM2PKM2ROSPKM2調[32][33]

フェニルアラニンによる阻害

編集

尿PKUPKM2PKM2[34][35]

がん

編集

PKM2PKM2MAPK1ERK2PKM2PKM2PKM2調[36]PKM1PKM2PKM2[8]

代替酵素

編集

PPDK2PPDK[37]

出典

編集
  1. ^ “Human pyruvate kinase M2: a multifunctional protein”. Protein Science 19 (11): 2031–44. (November 2010). doi:10.1002/pro.505. PMC 3005776. PMID 20857498. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3005776/. 
  2. ^ Basic Medical Endocrinology (4th ed.). Elsevier. (2009). p. 132. ISBN 978-0-12-373975-9. https://archive.org/details/basicmedicalendo00good_712 
  3. ^ “Isoenzymes of pyruvate kinase”. Biochemical Society Transactions 18 (2): 193–6. (April 1990). doi:10.1042/bst0180193. PMID 2379684. https://semanticscholar.org/paper/23471261c5b7ba2b49c3f2ad0820f0a3acf74812. 
  4. ^ “Double role for pyruvate kinase type M2 in the expansion of phosphometabolite pools found in tumor cells”. Critical Reviews in Oncogenesis 3 (1–2): 91–115. (1992-01-01). PMID 1532331. 
  5. ^ “The M1- and M2-type isozymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing”. The Journal of Biological Chemistry 261 (29): 13807–12. (October 1986). doi:10.1016/S0021-9258(18)67091-7. PMID 3020052. 
  6. ^ “Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis”. Biochemistry 44 (27): 9417–29. (July 2005). doi:10.1021/bi0474923. PMID 15996096. 
  7. ^ “Turning on a fuel switch of cancer: hnRNP proteins regulate alternative splicing of pyruvate kinase mRNA”. Cancer Research 70 (22): 8977–80. (November 2010). doi:10.1158/0008-5472.CAN-10-2513. PMC 2982937. PMID 20978194. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2982937/. 
  8. ^ a b “Posttranslational Modifications of Pyruvate Kinase M2: Tweaks that Benefit Cancer”. Frontiers in Oncology 8: 22. (2018). doi:10.3389/fonc.2018.00022. PMC 5808394. PMID 29468140. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5808394/. 
  9. ^ a b “The allosteric regulation of pyruvate kinase”. The Journal of Biological Chemistry 275 (24): 18145–52. (June 2000). doi:10.1074/jbc.M001870200. PMID 10751408. 
  10. ^ “In vitro binding of the pleiotropic transcriptional regulatory protein, FruR, to the fru, pps, ace, pts and icd operons of Escherichia coli and Salmonella typhimurium”. Journal of Molecular Biology 234 (1): 28–44. (November 1993). doi:10.1006/jmbi.1993.1561. PMID 8230205. 
  11. ^ “The global regulatory protein FruR modulates the direction of carbon flow in Escherichia coli”. Molecular Microbiology 16 (6): 1157–69. (June 1995). doi:10.1111/j.1365-2958.1995.tb02339.x. PMID 8577250. 
  12. ^ “The catabolite repressor/activator (Cra) protein of enteric bacteria”. Journal of Bacteriology 178 (12): 3411–7. (June 1996). doi:10.1128/jb.178.12.3411-3417.1996. PMC 178107. PMID 8655535. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC178107/. 
  13. ^ “Phosphoenolpyruvate and Mg2+ binding to pyruvate kinase monitored by infrared spectroscopy” (英語). Biophysical Journal 98 (9): 1931–40. (May 2010). Bibcode2010BpJ....98.1931K. doi:10.1016/j.bpj.2009.12.4335. PMC 2862152. PMID 20441757. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2862152/. 
  14. ^ “Prebiotic synthesis of phosphoenol pyruvate by α-phosphorylation-controlled triose glycolysis”. Nature Chemistry 9 (4): 310–317. (April 2017). doi:10.1038/nchem.2624. PMID 28338685. https://discovery.ucl.ac.uk/id/eprint/1520873/. 
  15. ^ “Kinetic linked-function analysis of the multiligand interactions on Mg(2+)-activated yeast pyruvate kinase”. Biochemistry 40 (43): 13097–106. (October 2001). doi:10.1021/bi010126o. PMID 11669648. 
  16. ^ a b c d e Biochemistry (fifth ed.). New York, NY: W.H. Freeman. (2002). ISBN 978-0-7167-3051-4. https://archive.org/details/biochemistrychap00jere 
  17. ^ “Pyruvate kinase. Classes of regulatory isoenzymes in mammalian tissues”. European Journal of Biochemistry 37 (1): 148–56. (August 1973). doi:10.1111/j.1432-1033.1973.tb02969.x. hdl:10261/78345. PMID 4729424. 
  18. ^ “Synergistic Allosteric Mechanism of Fructose-1,6-bisphosphate and Serine for Pyruvate Kinase M2 via Dynamics Fluctuation Network Analysis”. Journal of Chemical Information and Modeling 56 (6): 1184–1192. (June 2016). doi:10.1021/acs.jcim.6b00115. PMC 5115163. PMID 27227511. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5115163/. 
  19. ^ “Serine is a natural ligand and allosteric activator of pyruvate kinase M2”. Nature 491 (7424): 458–462. (November 2012). Bibcode2012Natur.491..458C. doi:10.1038/nature11540. PMC 3894725. PMID 23064226. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894725/. 
  20. ^ “L-cysteine reversibly inhibits glucose-induced biphasic insulin secretion and ATP production by inactivating PKM2”. Proceedings of the National Academy of Sciences of the United States of America 112 (10): E1067-76. (March 2015). Bibcode2015PNAS..112E1067N. doi:10.1073/pnas.1417197112. PMC 4364213. PMID 25713368. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4364213/. 
  21. ^ “Distinguishing the interactions in the fructose 1,6-bisphosphate binding site of human liver pyruvate kinase that contribute to allostery.”. Biochemistry 54 (7): 1516–24. (24 February 2015). doi:10.1021/bi501426w. PMC 5286843. PMID 25629396. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5286843/. 
  22. ^ “The allosteric regulation of pyruvate kinase by fructose-1,6-bisphosphate”. Structure 6 (2): 195–210. (February 1998). doi:10.1016/S0969-2126(98)00021-5. PMID 9519410. 
  23. ^ “PKM2, a potential target for regulating cancer”. Gene 668: 48–53. (August 2018). doi:10.1016/j.gene.2018.05.038. PMID 29775756. 
  24. ^ “Activation of protein kinase and glycogen phosphorylase in isolated rat liver cells by glucagon and catecholamines”. The Journal of Biological Chemistry 252 (2): 528–35. (January 1977). doi:10.1016/S0021-9258(17)32749-7. PMID 188818. 
  25. ^ “Hormonal control of pyruvate kinase activity and of gluconeogenesis in isolated hepatocytes”. Proceedings of the National Academy of Sciences of the United States of America 73 (8): 2762–6. (1976). Bibcode1976PNAS...73.2762F. doi:10.1073/pnas.73.8.2762. PMC 430732. PMID 183209. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC430732/. 
  26. ^ “Metformin decreases gluconeogenesis by enhancing the pyruvate kinase flux in isolated rat hepatocytes”. European Journal of Biochemistry 213 (3): 1341–8. (1993). doi:10.1111/j.1432-1033.1993.tb17886.x. PMID 8504825. 
  27. ^ “Glucose and cAMP regulate the L-type pyruvate kinase gene by phosphorylation/dephosphorylation of the carbohydrate response element binding protein”. Proceedings of the National Academy of Sciences of the United States of America 98 (24): 13710–5. (November 2001). Bibcode2001PNAS...9813710K. doi:10.1073/pnas.231370798. PMC 61106. PMID 11698644. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC61106/. 
  28. ^ “The alternative splicing repressors hnRNP A1/A2 and PTB influence pyruvate kinase isoform expression and cell metabolism”. Proceedings of the National Academy of Sciences of the United States of America 107 (5): 1894–9. (February 2010). Bibcode2010PNAS..107.1894C. doi:10.1073/pnas.0914845107. PMC 2838216. PMID 20133837. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2838216/. 
  29. ^ “Insulin enhances metabolic capacities of cancer cells by dual regulation of glycolytic enzyme pyruvate kinase M2”. Molecular Cancer 12 (1): 72. (July 2013). doi:10.1186/1476-4598-12-72. PMC 3710280. PMID 23837608. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3710280/. 
  30. ^ “Erythrocyte pyruvate kinase deficiency: 2015 status report”. American Journal of Hematology 90 (9): 825–30. (September 2015). doi:10.1002/ajh.24088. PMC 5053227. PMID 26087744. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5053227/. 
  31. ^ “Red cell glycolytic enzyme disorders caused by mutations: an update”. Cardiovascular & Hematological Disorders Drug Targets 9 (2): 95–106. (June 2009). doi:10.2174/187152909788488636. PMID 19519368. 
  32. ^ “Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses”. Science 334 (6060): 1278–83. (December 2011). Bibcode2011Sci...334.1278A. doi:10.1126/science.1211485. PMC 3471535. PMID 22052977. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3471535/. 
  33. ^ “The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth”. Nature 452 (7184): 230–3. (March 2008). Bibcode2008Natur.452..230C. doi:10.1038/nature06734. PMID 18337823. 
  34. ^ “Phenylketonuria: phenylalanine inhibits brain pyruvate kinase in vivo”. Science 179 (4076): 904–6. (March 1973). Bibcode1973Sci...179..904M. doi:10.1126/science.179.4076.904. PMID 4734564. 
  35. ^ “Inhibition of human brain pyruvate kinase and hexokinase by phenylalanine and phenylpyruvate: possible relevance to phenylketonuric brain damage”. Proceedings of the National Academy of Sciences of the United States of America 63 (4): 1365–9. (August 1969). Bibcode1969PNAS...63.1365W. doi:10.1073/pnas.63.4.1365. PMC 223473. PMID 5260939. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC223473/. 
  36. ^ “ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect”. Nature Cell Biology 14 (12): 1295–304. (December 2012). doi:10.1038/ncb2629. PMC 3511602. PMID 23178880. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3511602/. 
  37. ^ “Reconstructing the mosaic glycolytic pathway of the anaerobic eukaryote Monocercomonoides” (Free full text). Eukaryotic Cell 5 (12): 2138–46. (December 2006). doi:10.1128/EC.00258-06. PMC 1694820. PMID 17071828. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1694820/. 

外部リンク

編集