コンテンツにスキップ

電子

出典: フリー百科事典『ウィキペディア(Wikipedia)』
電子
Electron
エネルギー準位別の水素原子軌道。色が濃い領域ほど電子が見つかりやすい。
粒子統計 フェルミ粒子
グループ レプトン
世代 第一世代
相互作用 弱い相互作用電磁気力重力
反粒子 陽電子[注釈 1]
理論化 リチャード・レミング英語版 (1838–1851)[1]
G.ジョンストン・ストーニー (1874) など[2][3]
発見 ジョゼフ・ジョン・トムソン (1897)[4]
記号 e
 
β
 
質量 9.1093837015(28)×10−31 kg
5.48579909065(16)×10−4 Da
[1822.888486209(53)]−1 Da
0.51099895000(15) MeV/c2
平均寿命 > 6.6×1028 [5] (stable)
電荷 −1 e
1.602176634×10−19 C
磁気モーメント9.2847647043(28)×10−24 J/T
−1.00115965218128(18) µB[6]
スピン  1 /2 ħ
弱アイソスピン LH: − 1 /2, RH: 0
弱超電荷 LH: −1, RH: −2
テンプレートを表示
標準模型
標準模型素粒子

: electron: e
   β
 [7][8][9]1/1836[10] ħ 2[8]

[11]

使

[12]

1838[2]1891electronJ. J. 1897[4]


歴史[編集]

電気力の効果の発見[編集]


[13]1600De Magneteelectrica[14] electric  electricity  ēlectrum λεκτρον ēlektron

2[]


17002vitreous fluidresinous fluid2[14][15] Ebenezer Kinnersley [16]:11810+2positivenegative[17][18]

18381851[1]18461874 e[19]1881[2]

1881 electrolion10 electron1894[1874]  electron 1906 electrion  electron [20][21] electron electricion[22]protonneutron使 -on electron [23][24]

[]

A round glass vacuum tube with a glowing circular beam inside
[25]

1859[26]18691876[27][28]:393J. J. [2]

1870[29]1874[27]18794[28]:394395

[30]1890[ 2]1000[27][30]

1892[31]
J. J. 

18962[32]1900[33][34][35]

1897J. J. [4]corpuscles e m m/e  m/e 1/1000[4][4][36]electron[37]:273 e/m J. J. 1899e~6.8×1010 esu m~3×1026g[38][39]

190919111-1500.3%[4]19111913[40][41]

20沿1911[42]

[]

Three concentric circles about a nucleus, with an electron moving from the second to the first circle and releasing a photon
 n

1914[43]1913使[44][43]

191621[45]1927[46]1919調[47]1使[46][48]

19244[49]421925[43][50][51]

量子力学[編集]


1924Recherches sur la théorie des quanta[52][53]1927[54][55]
A spherically symmetric blue cloud that decreases in intensity from the center outward

1926[56]使19251913[57][58]

1928[59]1930[60]1932positron)  negatron electron[61]

1947M1940[62]

[]


20[63]19422.3 MeV300 MeV194770 MeV[64]

19681.5 GeVADONE[65]2[66]19892000CERNLEP209 GeV[67][68]

[]


269 °C4 K258 °C15 K20 nm × 20 nmCMOS[69]

[]

[]

A table with four rows and four columns, with each cell containing a particle identifier
 (e)

1[70]23 1/2 [71]

[]


9.109×1031[72]5.489×104 0.511 MeV (8.19×1014 J) 

1836[10][73][74]

1.602176634×1019[72]使[75] e
   e+
  [71][72]

 ħ/2 [72]1/2[71] ħ/2 [76]±ħ/2沿[72]9.27400915(23)×1024 [72][77][ 3][78]

[9][79]3[80]

[81]1022[82]1018[83]2.8179×1015 m[84][85][ 4]

寿2.2×106 [86]寿90%6.6×1028 [5][87][88]

[]




121ψ[89]:162218
A three dimensional projection of a two dimensional plot. There are symmetric hills along one axis and symmetric valleys along the other, roughly giving a saddle-shape
1221

2ψ(r1, r2) = ψ(r2, r1)  r1 r212[89]:162218

2[89]:162218

仮想粒子[編集]


[90] ΔE · Δt  ħ  ΔE  ħ  6.6×1016 eV·s  Δt  Δt  1.3×1021 s[91]
A sphere with a minus sign at lower left symbolizes the electron, while pairs of spheres with plus and minus signs show the virtual particles
 () 

1[92][93]1997TRISTAN[94][95]

0.1%[77][96][97]

[98][8][92][]

[]


[99](pp5861)[89](p140)[100]  [99](pp429434)
A graph with arcs showing the motion of charged particles
 q ()  B vq 

[101][ 5][89](p160)--[102]
A curve shows the motion of the electron, a red dot shows the nucleus, and a wiggly line the emitted photon
 e f E2  E1 

2[103][104]

[ 6] h/mec [105]2.43×1012 m[72]0.40.7 μm[106]

212 α  7.297353×103 1/137[72]

21.022 MeV23[107][108][109][110]

WWZ0
 [111]

原子と分子[編集]

A table of five rows and five columns, with each cell portraying a color-coded probability density

12

[112]:159160[113][112]:127132

[114]

[115][12][116][117]

[]

Four bolts of lightning strike the ground
[118][119][120]

[121]

[122][123]

 (en:) [124][125]

75%[126][127]

[128][125]

BCS[129]100 nm[130]: 

3[131][132]

[]


 c c c[133]
The plot starts at zero and curves sharply upward toward the right
1v  c

 v  v Ke


me 51 GeV[134] hp  λe = h/p [52] 51 GeV2.4×1017 m[135]

[]

A photon approaches the nucleus from the left, with the resulting electron and positron moving off to the right
[136]

[137]1100100

γ + γ  e+
  + e
 

15[138]

101[139][140]5[141]1,000

n  p+ e
  + ν 
e

30-40[142][143]

100[143][144]6060Co6060Ni[145]
A branching tree representing the particle production

20寿[146][]

[147][148]

3.0×1020 eV[149][150]

π
   μ
  + ν 
μ

[151]

μ
   e
  + ν 
e + ν 
μ

[]

A swirling green glow in the night sky above snow-covered ground
[152]

[153]

[154][155]

[156]使10[157]111980[158]

20082[159][160]: 

ARPESARPES[161]

応用[編集]

粒子線[編集]

A violet beam from above produces a blue glow about a Space shuttle model
NASA風洞実験では、スペースシャトルの模型に電子線を照射し、大気圏再突入時の電離気体の影響を模擬実験している[162]

使[163]0.11.3 mm107 W·cm2使[164][165]

EBL[166]10 nmEBL使[167]

使[168][169]

520 MeV5 cmX使[170][171]

使-[ 7][172]

[]


LEED20-200 eV[173]RHEED調8-20 keV14°[174][175]

[176]200 nm[177]100.0037 nm[178]0.05 nm[179]

2100100[180][181][182]

[]


FELFELX使[183]

使[184][185][186]

脚注[編集]

注釈[編集]



(一)^ 

(二)^ 

(三)^ 

(四)^  (E = mc2)
 r e
 ε0  m0 
 c r
: Haken, Wolf, & Brewer (2005).

(五)^ 

(六)^  Δλ  θ 
 cme Zombeck (2007)[73](p393, 396)

(七)^ 

出典[編集]



(一)^ ab Farrar, W.V. (1969). Richard Laming and the Coal-Gas Industry, with His Views on the Structure of Matter. Annals of Science 25 (3): 243254. doi:10.1080/00033796900200141. 

(二)^ abcd Arabatzis, T. (2006). Representing Electrons: A Biographical Approach to Theoretical Entities. University of Chicago Press. pp. 7074, 96. ISBN 978-0-226-02421-9. 2021-01-07. https://web.archive.org/web/20210107160308/https://books.google.com/books?id=rZHT-chpLmAC&pg=PA70 2020825 

(三)^ Buchwald, J.Z.; Warwick, A. (2001). Histories of the Electron: The Birth of Microphysics. MIT Press. pp. 195203. ISBN 978-0-262-52424-7. 2021-01-26. https://web.archive.org/web/20210126182003/https://books.google.com/books?id=1yqqhlIdCOoC&pg=PA195 2020825 

(四)^ abcdefThomson, J.J. (1897). Cathode Rays. Philosophical Magazine 44 (269): 293316. doi:10.1080/14786449708621070. 2022-01-25. https://web.archive.org/web/20220125001603/https://web.lemoyne.edu/~giunta/thomson1897.html 2022224. 

(五)^ ab Agostini, M. (2015). Test of electric charge conservation with Borexino. Physical Review Letters 115 (23): 231802. arXiv:1509.01223. Bibcode: 2015PhRvL.115w1802A. doi:10.1103/PhysRevLett.115.231802. PMID 26684111. 

(六)^ 2018 CODATA Value: electron magnetic moment to Bohr magneton ratio. The NIST Reference on Constants, Units, and Uncertainty.  NIST (2019520). 20221115

(七)^  Coffey, Jerry (2010910). What is an electron?. 201211112010910

(八)^ abc Curtis, L.J. (2003). Atomic Structure and Lifetimes: A conceptual approach. Cambridge University Press. p. 74. ISBN 978-0-521-53635-6. 2020-03-16. https://web.archive.org/web/20200316220442/https://books.google.com/books?id=KmwCsuvxClAC&pg=PA74 2020825 

(九)^ abEichten, E.J.; Peskin, M.E.; Peskin, M. (1983). New Tests for Quark and Lepton Substructure. Physical Review Letters 50 (11): 811814. Bibcode: 1983PhRvL..50..811E. doi:10.1103/PhysRevLett.50.811. OSTI 1446807. 

(十)^ abCODATA value: proton-electron mass ratio. 2006 CODATA recommended values.  National Institute of Standards and Technology. 20193282009718

(11)^ Anastopoulos, C. (2008). Particle Or Wave: The Evolution of the Concept of Matter in Modern Physics. Princeton University Press. pp. 236237. ISBN 978-0-691-13512-0. 2014-09-28. https://web.archive.org/web/20140928082921/http://books.google.com/books?id=rDEvQZhpltEC&pg=PA236 2020825 

(12)^ abPauling, L.C. (1960). The Nature of the Chemical Bond and the Structure of Molecules and Crystals: an introduction to modern structural chemistry (3rd ed.). Cornell University Press. pp. 410. ISBN 978-0-8014-0333-0. https://archive.org/details/natureofchemical0000paul_3ed/page/4 

(13)^ Shipley, J.T. (1945). Dictionary of Word Origins. The Philosophical Library. p. 133. ISBN 978-0-88029-751-6. https://archive.org/details/dictionaryofword00ship/page/133 

(14)^ ab Benjamin, Park (1898), A history of electricity (The intellectual rise in electricity) from antiquity to the days of Benjamin Franklin, New York: J. Wiley, pp. 315, 4845, ISBN 978-1-313-10605-4, https://archive.org/details/cu31924004128686/page/n10 

(15)^  Keithley, J.F. (1999). The Story of Electrical and Magnetic Measurements: From 500 B.C. to the 1940s. IEEE Press. pp. 1920. ISBN 978-0-7803-1193-0. 2022-02-04. https://web.archive.org/web/20220204082420/https://books.google.com/books?id=uwgNAtqSHuQC&pg=PR7 2020825 

(16)^ Cajori, Florian (1917). A History of Physics in Its Elementary Branches: Including the Evolution of Physical Laboratories. Macmillan. https://archive.org/details/historyofphysics00cajo 

(17)^ Benjamin Franklin (17061790). Eric Weisstein's World of Biography.  Wolfram Research. 201382720101216

(18)^  Myers, R.L. (2006). The Basics of Physics. Greenwood Publishing Group. p. 242. ISBN 978-0-313-32857-2. https://archive.org/details/basicsofphysics0000myer/page/242 

(19)^  Barrow, J.D. (1983). Natural Units Before Planck. Quarterly Journal of the Royal Astronomical Society 24: 2426. Bibcode: 1983QJRAS..24...24B. 

(20)^  Okamura, Sōgo (1994). History of Electron Tubes. IOS Press. p. 11. ISBN 978-90-5199-145-1. 11 May 2016. https://web.archive.org/web/20160511214552/https://books.google.com/books?id=VHFyngmO95YC&pg=PR11 2015529. "In 1881, Stoney named this electromagnetic 'electrolion'. It came to be called 'electron' from 1891. [...] In 1906, the suggestion to call cathode ray particles 'electrions' was brought up but through the opinion of Lorentz of Holland 'electrons' came to be widely used." 

(21)^  Stoney, G.J. (1894). Of the "Electron," or Atom of Electricity. Philosophical Magazine 38 (5): 418420. doi:10.1080/14786449408620653. 2020-10-31. https://web.archive.org/web/20201031080323/https://zenodo.org/record/1431209 2019825. 

(22)^ "electron, n.2". OED Online. March 2013. Oxford University Press. Accessed 12 April 2013 [1] Archived 2021-04-27 at the Wayback Machine.

(23)^  Soukhanov, A.H., ed (1986). Word Mysteries & Histories. Houghton Mifflin. p. 73. ISBN 978-0-395-40265-8 

(24)^  Guralnik, D.B., ed (1970). Webster's New World Dictionary. Prentice Hall. p. 450 

(25)^  Born, M.; Blin-Stoyle, R.J.; Radcliffe, J.M. (1989). Atomic Physics. Courier Dover. p. 26. ISBN 978-0-486-65984-8. 2021-01-26. https://web.archive.org/web/20210126003322/https://books.google.com/books?id=NmM-KujxMtoC&pg=PA26 2020825 

(26)^ Plücker, M. (1858-12-01). XLVI. Observations on the electrical discharge through rarefied gases. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 16 (109): 408418. doi:10.1080/14786445808642591. ISSN 1941-5982. https://doi.org/10.1080/14786445808642591. 

(27)^ abc Leicester, H.M. (1971). The Historical Background of Chemistry. Courier Dover. pp. 221222. ISBN 978-0-486-61053-5. 2022-02-04. https://web.archive.org/web/20220204082418/https://books.google.com/books?id=aJZVQnqcwv4C&pg=PA221 2020825 

(28)^ ab Whittaker, E.T. (1951). A History of the Theories of Aether and Electricity. 1. London: Nelson 

(29)^  DeKosky, R.K. (1983). William Crookes and the quest for absolute vacuum in the 1870s. Annals of Science 40 (1): 118. doi:10.1080/00033798300200101. 

(30)^ abSchuster, Arthur (1890). The discharge of electricity through gases. Proceedings of the Royal Society of London 47: 526559. doi:10.1098/rspl.1889.0111. 

(31)^ 120Nature 972012doi:10.1038/ndigest.2012.120706202464 

(32)^  Trenn, T.J. (1976). Rutherford on the Alpha-Beta-Gamma Classification of Radioactive Rays. Isis 67 (1): 6175. doi:10.1086/351545. JSTOR 231134. 

(33)^ Becquerel, H. (1900). Déviation du Rayonnement du Radium dans un Champ Électrique (). Comptes rendus de l'Académie des sciences 130: 809815. 

(34)^ Buchwald and Warwick (2001:9091).

(35)^  Myers, W.G. (1976). Becquerel's Discovery of Radioactivity in 1896. Journal of Nuclear Medicine 17 (7): 579582. PMID 775027. 2008-12-22. https://web.archive.org/web/20081222023947/http://jnm.snmjournals.org/cgi/content/abstract/17/7/579 2022224. 

(36)^  Thomson, J.J. (1906). Nobel Lecture: Carriers of Negative Electricity.  The Nobel Foundation. 200810102008825

(37)^  O'Hara, J. G. (March 1975). George Johnstone Stoney, F.R.S., and the Concept of the Electron. Notes and Records of the Royal Society of London (Royal Society) 29 (2): 265276. doi:10.1098/rsnr.1975.0018. JSTOR 531468. 

(38)^ Abraham Pais (1997). The discovery of the electron  100 years of elementary particles. Beam Line 1: 416. 2021-09-14. https://web.archive.org/web/20210914142755/https://www.slac.stanford.edu/pubs/beamline/pdf/97i.pdf 202194. 

(39)^ Kaufmann, W. (1897). Die magnetische Ablenkbarkeit der Kathodenstrahlen und ihre Abhängigkeit vom Entladungspotential. Annalen der Physik und Chemie 297 (7): 544552. Bibcode: 1897AnP...297..544K. doi:10.1002/andp.18972970709. ISSN 0003-3804. 2022-02-24. https://web.archive.org/web/20220224105619/https://onlinelibrary.wiley.com/doi/10.1002/andp.18972970709 2022224. 

(40)^  Kikoin, I.K.; Sominskiĭ, I.S. (1961). Abram Fedorovich Ioffe (on his eightieth birthday). Soviet Physics Uspekhi 3 (5): 798809. Bibcode: 1961SvPhU...3..798K. doi:10.1070/PU1961v003n05ABEH005812.  Original publication in Russian: Кикоин, И.К.; Соминский, М.С. (1960). Академик А.Ф. Иоффе. Успехи Физических Наук 72 (10): 303321. doi:10.3367/UFNr.0072.196010e.0307. 

(41)^  Millikan, R.A. (1911). The Isolation of an Ion, a Precision Measurement of its Charge, and the Correction of Stokes's Law. Physical Review 32 (2): 349397. Bibcode: 1911PhRvI..32..349M. doi:10.1103/PhysRevSeriesI.32.349. 2020-03-17. https://web.archive.org/web/20200317204458/https://authors.library.caltech.edu/6437/1/MILpr11b.pdf 2019621. 

(42)^  Das Gupta, N.N.; Ghosh, S.K. (1999). A Report on the Wilson Cloud Chamber and Its Applications in Physics. Reviews of Modern Physics 18 (2): 225290. Bibcode: 1946RvMP...18..225G. doi:10.1103/RevModPhys.18.225. 

(43)^ abc Smirnov, B.M. (2003). Physics of Atoms and Ions. Springer. pp. 1421. ISBN 978-0-387-95550-6. 2020-05-09. https://web.archive.org/web/20200509044538/https://books.google.com/books?id=I1O8WYOcUscC&pg=PA14 2020825 

(44)^  Bohr, N. (1922). Nobel Lecture: The Structure of the Atom.  The Nobel Foundation. 20081232008123

(45)^  Lewis, G.N. (1916). The Atom and the Molecule. Journal of the American Chemical Society 38 (4): 762786. doi:10.1021/ja02261a002. 2019-08-25. https://web.archive.org/web/20190825132554/https://zenodo.org/record/1429068/files/article.pdf 2019825. 

(46)^ ab Arabatzis, T.; Gavroglu, K. (1997). The chemists' electron. European Journal of Physics 18 (3): 150163. Bibcode: 1997EJPh...18..150A. doi:10.1088/0143-0807/18/3/005. 2020-06-05. https://web.archive.org/web/20200605041731/https://pdfs.semanticscholar.org/3804/783ac9fc011aeae884a3d370a474cbfdd46f.pdf. 

(47)^  Langmuir, I. (1919). The Arrangement of Electrons in Atoms and Molecules. Journal of the American Chemical Society 41 (6): 868934. doi:10.1021/ja02227a002. 2021-01-26. https://web.archive.org/web/20210126003324/https://zenodo.org/record/1429026 2019621. 

(48)^  Scerri, E.R. (2007). The Periodic Table. Oxford University Press. pp. 205226. ISBN 978-0-19-530573-9. https://archive.org/details/periodictableits0000scer/page/205 

(49)^  Massimi, M. (2005). Pauli's Exclusion Principle, The Origin and Validation of a Scientific Principle. Cambridge University Press. pp. 78. ISBN 978-0-521-83911-2. 2022-02-04. https://web.archive.org/web/20220204071142/https://books.google.com/books?id=YS91Gsbd13cC&pg=PA7 2020825 

(50)^  Uhlenbeck, G.E.; Goudsmith, S. (1925). Ersetzung der Hypothese vom unmechanischen Zwang durch eine Forderung bezüglich des inneren Verhaltens jedes einzelnen Elektrons (). Die Naturwissenschaften 13 (47): 953954. Bibcode: 1925NW.....13..953E. doi:10.1007/BF01558878. 

(51)^ Pauli, W. (1923). Über die Gesetzmäßigkeiten des anomalen Zeemaneffektes (). Zeitschrift für Physik 16 (1): 155164. Bibcode: 1923ZPhy...16..155P. doi:10.1007/BF01327386. 

(52)^ ab de Broglie, L. (1929). Nobel Lecture: The Wave Nature of the Electron.  The Nobel Foundation. 20081042008830

(53)^  Falkenburg, B. (2007). Particle Metaphysics: A Critical Account of Subatomic Reality. Springer. p. 85. Bibcode: 2007pmca.book.....F. ISBN 978-3-540-33731-7. 2022-02-04. https://web.archive.org/web/20220204082417/https://books.google.com/books?id=EbOz5I9RNrYC&pg=PA85 2020825 

(54)^ Navarro, Jaume (2010). Electron diffraction chez Thomson: early responses to quantum physics in Britain (). The British Journal for the History of Science 43 (2): 245275. doi:10.1017/S0007087410000026. ISSN 0007-0874. https://www.cambridge.org/core/product/identifier/S0007087410000026/type/journal_article. 

(55)^ Davisson, C. (1937). Nobel Lecture: The Discovery of Electron Waves.  The Nobel Foundation. 2008792008830

(56)^  Schrödinger, E. (1926). Quantisierung als Eigenwertproblem (). Annalen der Physik 385 (13): 437490. Bibcode: 1926AnP...385..437S. doi:10.1002/andp.19263851302. 

(57)^  Rigden, J.S. (2003). Hydrogen. Harvard University Press. pp. 5986. ISBN 978-0-674-01252-3. 2022-02-04. https://web.archive.org/web/20220204082407/https://books.google.com/books?id=FhFxn_lUvz0C&pg=PT66 2020825 

(58)^  Reed, B.C. (2007). Quantum Mechanics. Jones & Bartlett Publishers. pp. 275350. ISBN 978-0-7637-4451-9. 2022-02-04. https://web.archive.org/web/20220204082419/https://books.google.com/books?id=4sluccbpwjsC&pg=PA275 2020825 

(59)^  Dirac, P.A.M. (1928). The Quantum Theory of the Electron. Proceedings of the Royal Society A 117 (778): 610624. Bibcode: 1928RSPSA.117..610D. doi:10.1098/rspa.1928.0023. 2018-11-25. https://web.archive.org/web/20181125224103/http://rspa.royalsocietypublishing.org/content/royprsa/117/778/610.full.pdf 2022224. 

(60)^  Dirac, P.A.M. (1933). Nobel Lecture: Theory of Electrons and Positrons.  The Nobel Foundation. 20087232008111

(61)^ Anderson, Carl D. (1933-03-15). The Positive Electron (). Physical Review 43 (6): 491494. Bibcode: 1933PhRv...43..491A. doi:10.1103/PhysRev.43.491. ISSN 0031-899X. 

(62)^  The Nobel Prize in Physics 1965.  The Nobel Foundation. 200810242008114

(63)^  Panofsky, W.K.H. (1997). The Evolution of Particle Accelerators & Colliders. Beam Line 27 (1): 3644. 2008-09-09. https://web.archive.org/web/20080909234139/http://www.slac.stanford.edu/pubs/beamline/27/1/27-1-panofsky.pdf 2008915. 

(64)^  Elder, F.R. (1947). Radiation from Electrons in a Synchrotron. Physical Review 71 (11): 829830. Bibcode: 1947PhRv...71..829E. doi:10.1103/PhysRev.71.829.5. 

(65)^  Hoddeson, L. (1997). The Rise of the Standard Model: Particle Physics in the 1960s and 1970s. Cambridge University Press. pp. 2526. ISBN 978-0-521-57816-5. 2022-02-04. https://web.archive.org/web/20220204082414/https://books.google.com/books?id=klLUs2XUmOkC&pg=PA25 2020825 

(66)^ Bernardini, C. (2004). AdA: The First ElectronPositron Collider. Physics in Perspective 6 (2): 156183. Bibcode: 2004PhP.....6..156B. doi:10.1007/s00016-003-0202-y. 

(67)^ Testing the Standard Model: The LEP experiments.  CERN (2008). 20089142008915

(68)^ LEP reaps a final harvest. CERN Courier 40 (10). (2000). 2017-09-30. https://web.archive.org/web/20170930222305/http://cerncourier.com/cws/article/cern/28335 2022224. 

(69)^ Prati, E.; De Michielis, M.; Belli, M.; Cocco, S.; Fanciulli, M.; Kotekar-Patil, D.; Ruoff, M.; Kern, D.P. et al. (2012). Few electron limit of n-type metal oxide semiconductor single electron transistors. Nanotechnology 23 (21): 215204. arXiv:1203.4811. Bibcode: 2012Nanot..23u5204P. doi:10.1088/0957-4484/23/21/215204. PMID 22552118. 

(70)^ Frampton, P.H.; Hung, P.Q.; Sher, Marc (2000). Quarks and Leptons Beyond the Third Generation. Physics Reports 330 (56): 263348. arXiv:hep-ph/9903387. Bibcode: 2000PhR...330..263F. doi:10.1016/S0370-1573(99)00095-2. 

(71)^ abcRaith, W.; Mulvey, T. (2001). Constituents of Matter: Atoms, Molecules, Nuclei and Particles. CRC Press. pp. 777781. ISBN 978-0-8493-1202-1 

(72)^ abcdefghThe original source for CODATA is Mohr, P.J.; Taylor, B.N.; Newell, D.B. (2008). CODATA recommended values of the fundamental physical constants. Reviews of Modern Physics 80 (2): 633730. arXiv:0801.0028. Bibcode: 2008RvMP...80..633M. doi:10.1103/RevModPhys.80.633. 
Individual physical constants from the CODATA are available at: The NIST Reference on Constants, Units and Uncertainty.  National Institute of Standards and Technology. 20091162009115

(73)^ abZombeck, M.V. (2007). Handbook of Space Astronomy and Astrophysics (3rd ed.). Cambridge University Press. p. 14. ISBN 978-0-521-78242-5. 2022-02-04. https://web.archive.org/web/20220204082414/https://books.google.com/books?id=tp_G85jm6IAC&pg=PA14 2020825 

(74)^ Murphy, M.T. (2008). Strong Limit on a Variable Proton-to-Electron Mass Ratio from Molecules in the Distant Universe. Science 320 (5883): 16111613. arXiv:0806.3081. Bibcode: 2008Sci...320.1611M. doi:10.1126/science.1156352. PMID 18566280. 

(75)^ Zorn, J.C.; Chamberlain, G.E.; Hughes, V.W. (1963). Experimental Limits for the ElectronProton Charge Difference and for the Charge of the Neutron. Physical Review 129 (6): 25662576. Bibcode: 1963PhRv..129.2566Z. doi:10.1103/PhysRev.129.2566. 

(76)^ Gupta, M.C. (2001). Atomic and Molecular Spectroscopy. New Age Publishers. p. 81. ISBN 978-81-224-1300-7. 2014-09-30. https://web.archive.org/web/20140930054250/http://books.google.com/books?id=0tIA1M6DiQIC&pg=PA81 2020825 

(77)^ abOdom, B. (2006). New Measurement of the Electron Magnetic Moment Using a One-Electron Quantum Cyclotron. Physical Review Letters 97 (3): 030801. Bibcode: 2006PhRvL..97c0801O. doi:10.1103/PhysRevLett.97.030801. PMID 16907490. 

(78)^ Anastopoulos, C. (2008). Particle Or Wave: The Evolution of the Concept of Matter in Modern Physics. Princeton University Press. pp. 261262. ISBN 978-0-691-13512-0. 2021-01-07. https://web.archive.org/web/20210107160318/https://books.google.com/books?id=rDEvQZhpltEC&pg=PA261 2020825 

(79)^ Gabrielse, G. (2006). New Determination of the Fine Structure Constant from the Electron gValue and QED. Physical Review Letters 97 (3): 030802(14). Bibcode: 2006PhRvL..97c0802G. doi:10.1103/PhysRevLett.97.030802. PMID 16907491. 

(80)^ Schlappa, J.; et al. (2012). Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr2CuO3. Nature 485: 82-85. doi:10.1038/nature10974. 

(81)^ Eduard Shpolsky, Atomic physics (Atomnaia fizika), second edition, 1951

(82)^ Dehmelt, H. (1988). A Single Atomic Particle Forever Floating at Rest in Free Space: New Value for Electron Radius. Physica Scripta T22: 102110. Bibcode: 1988PhST...22..102D. doi:10.1088/0031-8949/1988/T22/016. 

(83)^ Gabrielse, Gerald (2006104). Precision pins down the electrons magnetism. CERN Courier.  IOP Publishing. 202466

(84)^ Meschede, D. (2004). Optics, light and lasers: The Practical Approach to Modern Aspects of Photonics and Laser Physics. Wiley-VCH. p. 168. ISBN 978-3-527-40364-6. 2014-08-21. https://web.archive.org/web/20140821185221/http://books.google.com/books?id=PLISLfBLcmgC&pg=PA168 2020825 

(85)^ Haken, H.; Wolf, H.C.; Brewer, W.D. (2005). The Physics of Atoms and Quanta: Introduction to Experiments and Theory. Springer. p. 70. ISBN 978-3-540-67274-6. 2021-05-10. https://web.archive.org/web/20210510144005/https://books.google.com/books?id=SPrAMy8glocC&pg=PA70 2020825 

(86)^ Steinberg, R.I. (1999). Experimental test of charge conservation and the stability of the electron. Physical Review D 61 (2): 25822586. Bibcode: 1975PhRvD..12.2582S. doi:10.1103/PhysRevD.12.2582. 

(87)^ Beringer, J. (2012). Review of Particle Physics: [electron properties]. Physical Review D 86 (1): 010001. Bibcode: 2012PhRvD..86a0001B. doi:10.1103/PhysRevD.86.010001. 2022-01-15. https://web.archive.org/web/20220115063155/https://pdg.lbl.gov/2012/listings/rpp2012-list-electron.pdf 2022224. 

(88)^ Back, H.O. (2002). Search for electron decay mode e  γ + ν with prototype of Borexino detector. Physics Letters B 525 (12): 2940. Bibcode: 2002PhLB..525...29B. doi:10.1016/S0370-2693(01)01440-X. 

(89)^ abcdeMunowitz, M. (2005). Knowing the Nature of Physical Law. Oxford University Press. p. 162. ISBN 978-0-19-516737-5. https://archive.org/details/knowingnatureofp0000muno 

(90)^ Kane, G. (October 9, 2006). Are virtual particles really constantly popping in and out of existence? Or are they merely a mathematical bookkeeping device for quantum mechanics?. Scientific American. https://www.sciam.com/article.cfm?id=are-virtual-particles-rea&topicID=13 2008919. 

(91)^ Taylor, J. (1989). Gauge Theories in Particle Physics. In Davies, Paul. The New Physics. Cambridge University Press. p. 464. ISBN 978-0-521-43831-5. 2014-09-21. https://books.google.com/books?id=akb2FpZSGnMC&pg=PA464 2020825 

(92)^ abGenz, H. (2001). Nothingness: The Science of Empty Space. Da Capo Press. pp. 241243, 245247. ISBN 978-0-7382-0610-3 

(93)^ Gribbin, J. (1997125). More to electrons than meets the eye. New Scientist. 2015211. https://web.archive.org/web/20150211085433/http://www.newscientist.com/article/mg15320662.300-science--more-to-electrons-than-meets-the-eye.html 2008917 

(94)^ Levine, I. (1997). Measurement of the Electromagnetic Coupling at Large Momentum Transfer. Physical Review Letters 78 (3): 424427. Bibcode: 1997PhRvL..78..424L. doi:10.1103/PhysRevLett.78.424. 

(95)^ Murayama, H. (1017 March 2006). Supersymmetry Breaking Made Easy, Viable and Generic. Proceedings of the XLIInd Rencontres de Moriond on Electroweak Interactions and Unified Theories. La Thuile, Italy. arXiv:0709.3041. Bibcode:2007arXiv0709.3041M  lists a 9% mass difference for an electron that is the size of the Planck distance.

(96)^ Schwinger, J. (1948). On Quantum-Electrodynamics and the Magnetic Moment of the Electron. Physical Review 73 (4): 416417. Bibcode: 1948PhRv...73..416S. doi:10.1103/PhysRev.73.416. 

(97)^ Huang, K. (2007). Fundamental Forces of Nature: The Story of Gauge Fields. World Scientific. pp. 123125. ISBN 978-981-270-645-4. 2022-02-04. https://web.archive.org/web/20220204071144/https://books.google.com/books?id=q-CIFHpHxfEC&pg=PA123 2020825 

(98)^ Foldy, L.L.; Wouthuysen, S. (1950). On the Dirac Theory of Spin 1/2 Particles and Its Non-Relativistic Limit. Physical Review 78 (1): 2936. Bibcode: 1950PhRv...78...29F. doi:10.1103/PhysRev.78.29. 

(99)^ abGriffiths, David J. (1998). Introduction to Electrodynamics (3rd ed.). Prentice Hall. ISBN 978-0-13-805326-0. https://archive.org/details/introductiontoel00grif_0 

(100)^ Crowell, B. (2000). Electricity and Magnetism. Light and Matter. pp. 129152. ISBN 978-0-9704670-4-1. 2022-02-04. https://web.archive.org/web/20220204083733/https://books.google.com/books?id=s9QWZNfnz1oC&pg=PT129 2020825 

(101)^ Mahadevan, R.; Narayan, R.; Yi, I. (1996). Harmony in Electrons: Cyclotron and Synchrotron Emission by Thermal Electrons in a Magnetic Field. The Astrophysical Journal 465: 327337. arXiv:astro-ph/9601073. Bibcode: 1996ApJ...465..327M. doi:10.1086/177422. 

(102)^ Rohrlich, F. (1999). The Self-Force and Radiation Reaction. American Journal of Physics 68 (12): 11091112. Bibcode: 2000AmJPh..68.1109R. doi:10.1119/1.1286430. 

(103)^ Georgi, H. (1989). Grand Unified Theories. In Davies, Paul. The New Physics. Cambridge University Press. p. 427. ISBN 978-0-521-43831-5. 2014-09-21. https://books.google.com/books?id=akb2FpZSGnMC&pg=PA427 2020825 

(104)^ Blumenthal, G.J.; Gould, R. (1970). Bremsstrahlung, Synchrotron Radiation, and Compton Scattering of High-Energy Electrons Traversing Dilute Gases. Reviews of Modern Physics 42 (2): 237270. Bibcode: 1970RvMP...42..237B. doi:10.1103/RevModPhys.42.237. 

(105)^ The Nobel Prize in Physics 1927.  The Nobel Foundation (2008). 200810242008928

(106)^ Chen, S.-Y.; Maksimchuk, A.; Umstadter, D. (1998). Experimental observation of relativistic nonlinear Thomson scattering. Nature 396 (6712): 653655. arXiv:physics/9810036. Bibcode: 1998Natur.396..653C. doi:10.1038/25303. 

(107)^ Beringer, R.; Montgomery, C.G. (1942). The Angular Distribution of Positron Annihilation Radiation. Physical Review 61 (56): 222224. Bibcode: 1942PhRv...61..222B. doi:10.1103/PhysRev.61.222. 

(108)^ Buffa, A. (2000). College Physics (4th ed.). Prentice Hall. p. 888. ISBN 978-0-13-082444-8. https://archive.org/details/collegephysicsvo00jerr/page/888 

(109)^ Eichler, J. (2005). Electronpositron pair production in relativistic ionatom collisions. Physics Letters A 347 (13): 6772. Bibcode: 2005PhLA..347...67E. doi:10.1016/j.physleta.2005.06.105. 

(110)^ Hubbell, J.H. (2006). Electron positron pair production by photons: A historical overview. Radiation Physics and Chemistry 75 (6): 614623. Bibcode: 2006RaPC...75..614H. doi:10.1016/j.radphyschem.2005.10.008. 2019-06-21. https://web.archive.org/web/20190621192329/https://zenodo.org/record/1259327 2019621. 

(111)^ Quigg, C. (430 June 2000). The Electroweak Theory. TASI 2000: Flavor Physics for the Millennium. Boulder, Colorado. p. 80. arXiv:hep-ph/0204104. Bibcode:2002hep.ph....4104Q

(112)^ abTipler, Paul; Llewellyn, Ralph (2003). Modern Physics (illustrated ed.). Macmillan. ISBN 978-0-7167-4345-3 

(113)^ Burhop, E.H.S. (1952). The Auger Effect and Other Radiationless Transitions. Cambridge University Press. pp. 23. ISBN 978-0-88275-966-1 

(114)^ Jiles, D. (1998). Introduction to Magnetism and Magnetic Materials. CRC Press. pp. 280287. ISBN 978-0-412-79860-3. 2021-01-26. https://web.archive.org/web/20210126003325/https://books.google.com/books?id=axyWXjsdorMC&pg=PA280 2020825 

(115)^ Löwdin, P.O.; Erkki Brändas, E.; Kryachko, E.S. (2003). Fundamental World of Quantum Chemistry: A Tribute to the Memory of Per-Olov Löwdin. Springer Science+Business Media. pp. 393394. ISBN 978-1-4020-1290-7. 2022-02-04. https://web.archive.org/web/20220204071147/https://books.google.com/books?id=8QiR8lCX_qcC&pg=PA393 2020825 

(116)^ McQuarrie, D.A.; Simon, J.D. (1997). Physical Chemistry: A Molecular Approach. University Science Books. pp. 325361. ISBN 978-0-935702-99-6. 2021-01-07. https://web.archive.org/web/20210107160307/https://books.google.com/books?id=f-bje0-DEYUC&pg=PA325 2020825 

(117)^ Daudel, R. (1974). The Electron Pair in Chemistry. Canadian Journal of Chemistry 52 (8): 13101320. doi:10.1139/v74-201. 

(118)^ Rakov, V.A.; Uman, M.A. (2007). Lightning: Physics and Effects. Cambridge University Press. p. 4. ISBN 978-0-521-03541-5. 2021-01-26. https://web.archive.org/web/20210126003319/https://books.google.com/books?id=TuMa5lAa3RAC&pg=PA4 2020825 

(119)^ Freeman, G.R.; March, N.H. (1999). Triboelectricity and some associated phenomena. Materials Science and Technology 15 (12): 14541458. Bibcode: 1999MatST..15.1454F. doi:10.1179/026708399101505464. 

(120)^ Forward, K.M.; Lacks, D.J.; Sankaran, R.M. (2009). Methodology for studying particleparticle triboelectrification in granular materials. Journal of Electrostatics 67 (23): 178183. doi:10.1016/j.elstat.2008.12.002. 

(121)^ Weinberg, S. (2003). The Discovery of Subatomic Particles. Cambridge University Press. pp. 1516. ISBN 978-0-521-82351-7. https://archive.org/details/discoveryofsubat00wein_0/page/15 

(122)^ Lou, L.-F. (2003). Introduction to phonons and electrons. World Scientific. pp. 162, 164. Bibcode: 2003ipe..book.....L. ISBN 978-981-238-461-4. 2022-02-04. https://web.archive.org/web/20220204071149/https://books.google.com/books?id=XMv-vfsoRF8C&pg=PA162 2020825 

(123)^ Guru, B.S.; Hızıroğlu, H.R. (2004). Electromagnetic Field Theory. Cambridge University Press. pp. 138, 276. ISBN 978-0-521-83016-4. https://books.google.com/books?id=b2f8rCngSuAC&pg=PA138 []

(124)^ Achuthan, M.K.; Bhat, K.N. (2007). Fundamentals of Semiconductor Devices. Tata McGraw-Hill. pp. 4967. ISBN 978-0-07-061220-4. 2021-01-07. https://web.archive.org/web/20210107160319/https://books.google.com/books?id=REQkwBF4cVoC&pg=PA49 2020825 

(125)^ abZiman, J.M. (2001). Electrons and Phonons: The Theory of Transport Phenomena in Solids. Oxford University Press. p. 260. ISBN 978-0-19-850779-6. 2022-02-24. https://web.archive.org/web/20220224105543/https://books.google.com/books?id=UtEy63pjngsC&pg=PA260 2020825 

(126)^ Main, P. (June 12, 1993). When electrons go with the flow: Remove the obstacles that create electrical resistance, and you get ballistic electrons and a quantum surprise. New Scientist 1887: 30. 2015-02-11. https://web.archive.org/web/20150211085229/http://www.newscientist.com/article/mg13818774.500-when-electrons-go-with-the-flow-remove-the-obstacles-thatcreate-electrical-resistance-and-you-get-ballistic-electrons-and-a-quantumsurprise.html 2008109. 

(127)^ Blackwell, G.R. (2000). The Electronic Packaging Handbook. CRC Press. pp. 6.396.40. ISBN 978-0-8493-8591-9. 2022-02-04. https://web.archive.org/web/20220204083743/https://books.google.com/books?id=D0PBG53PQlUC&pg=SA6-PA39 2020825 

(128)^ Durrant, A. (2000). Quantum Physics of Matter: The Physical World. CRC Press. pp. 43, 7178. ISBN 978-0-7503-0721-5. 2016-05-27. https://web.archive.org/web/20160527150628/https://books.google.com/books?id=F0JmHRkJHiUC&pg=PA43 20151016 

(129)^ The Nobel Prize in Physics 1972.  The Nobel Foundation (2008). 2008101120081013

(130)^ Kadin, A.M. (2007). Spatial Structure of the Cooper Pair. Journal of Superconductivity and Novel Magnetism 20 (4): 285292. arXiv:cond-mat/0510279. doi:10.1007/s10948-006-0198-z. 

(131)^ Discovery about behavior of building block of nature could lead to computer revolution. ScienceDaily (2009731). 201944200981

(132)^ Jompol, Y. (2009). Probing Spin-Charge Separation in a Tomonaga-Luttinger Liquid. Science 325 (5940): 597601. arXiv:1002.2782. Bibcode: 2009Sci...325..597J. doi:10.1126/science.1171769. PMID 19644117. 

(133)^ The Nobel Prize in Physics 1958, for the discovery and the interpretation of the Cherenkov effect.  The Nobel Foundation (2008). 200810182008925

(134)^ Special Relativity.  Stanford Linear Accelerator Center (2008826). 20088282008925

(135)^ Adams, S. (2000). Frontiers: Twentieth Century Physics. CRC Press. p. 215. ISBN 978-0-7484-0840-5. 2022-02-04. https://web.archive.org/web/20220204071142/https://books.google.com/books?id=yIsMaQblCisC&pg=PA215 2020825 

(136)^ Bianchini, Lorenzo (2017). Selected Exercises in Particle and Nuclear Physics. Springer. p. 79. ISBN 978-3-319-70494-4. 2020-01-02. https://web.archive.org/web/20200102022221/https://books.google.com/books?id=lktADwAAQBAJ&pg=PA79 2018420 

(137)^ Lurquin, P.F. (2003). The Origins of Life and the Universe. Columbia University Press. p. 2. ISBN 978-0-231-12655-7. https://archive.org/details/originsoflifet00paul/page/2 

(138)^ Silk, J. (2000). The Big Bang: The Creation and Evolution of the Universe (3rd ed.). Macmillan. pp. 110112, 134137. ISBN 978-0-8050-7256-3 

(139)^ Kolb, E.W.; Wolfram, Stephen (1980). The Development of Baryon Asymmetry in the Early Universe. Physics Letters B 91 (2): 217221. Bibcode: 1980PhLB...91..217K. doi:10.1016/0370-2693(80)90435-9. 2020-10-30. https://web.archive.org/web/20201030105942/https://authors.library.caltech.edu/99675/2/Development%20of%20Baryon%20Asymmetry%20in%20the%20Early%20Universe.pdf 2020825. 

(140)^ Sather, E. (SpringSummer 1996). The Mystery of Matter Asymmetry.  Stanford University. 200810122008111

(141)^ Burles, S.; Nollett, K.M.; Turner, M.S. (1999). "Big-Bang Nucleosynthesis: Linking Inner Space and Outer Space". arXiv:astro-ph/9903300

(142)^ Boesgaard, A.M.; Steigman, G. (1985). Big bang nucleosynthesis  Theories and observations. Annual Review of Astronomy and Astrophysics 23 (2): 319378. Bibcode: 1985ARA&A..23..319B. doi:10.1146/annurev.aa.23.090185.001535. 

(143)^ abBarkana, R. (2006). The First Stars in the Universe and Cosmic Reionization. Science 313 (5789): 931934. arXiv:astro-ph/0608450. Bibcode: 2006Sci...313..931B. doi:10.1126/science.1125644. PMID 16917052. 

(144)^ Burbidge, E.M. (1957). Synthesis of Elements in Stars. Reviews of Modern Physics 29 (4): 548647. Bibcode: 1957RvMP...29..547B. doi:10.1103/RevModPhys.29.547. 2018-07-23. https://web.archive.org/web/20180723054833/https://authors.library.caltech.edu/45747/1/BURrmp57.pdf 2019621. 

(145)^ Rodberg, L.S.; Weisskopf, V. (1957). Fall of Parity: Recent Discoveries Related to Symmetry of Laws of Nature. Science 125 (3249): 627633. Bibcode: 1957Sci...125..627R. doi:10.1126/science.125.3249.627. PMID 17810563. 

(146)^ Fryer, C.L. (1999). Mass Limits For Black Hole Formation. The Astrophysical Journal 522 (1): 413418. arXiv:astro-ph/9902315. Bibcode: 1999ApJ...522..413F. doi:10.1086/307647. 

(147)^ Parikh, M.K.; Wilczek, F. (2000). Hawking Radiation As Tunneling. Physical Review Letters 85 (24): 50425045. arXiv:hep-th/9907001. Bibcode: 2000PhRvL..85.5042P. doi:10.1103/PhysRevLett.85.5042. hdl:1874/17028. PMID 11102182. 

(148)^ Hawking, S.W. (1974). Black hole explosions?. Nature 248 (5443): 3031. Bibcode: 1974Natur.248...30H. doi:10.1038/248030a0. 

(149)^ Halzen, F.; Hooper, D. (2002). High-energy neutrino astronomy: the cosmic ray connection. Reports on Progress in Physics 66 (7): 10251078. arXiv:astro-ph/0204527. Bibcode: 2002RPPh...65.1025H. doi:10.1088/0034-4885/65/7/201. 

(150)^ Ziegler, J.F. (1998). Terrestrial cosmic ray intensities. IBM Journal of Research and Development 42 (1): 117139. Bibcode: 1998IBMJ...42..117Z. doi:10.1147/rd.421.0117. 

(151)^ Sutton, C. (199084). Muons, pions and other strange particles. New Scientist. 2015211. https://web.archive.org/web/20150211085842/http://www.newscientist.com/article/mg12717284.700-muons-pions-and-other-strange-particles-.html 2008828 

(152)^ Wolpert, S. (24 July 2008). "Scientists solve 30 year-old aurora borealis mystery" (Press release). University of California. 200881720081011

(153)^ Gurnett, D.A.; Anderson, R. (1976). Electron Plasma Oscillations Associated with Type III Radio Bursts. Science 194 (4270): 11591162. Bibcode: 1976Sci...194.1159G. doi:10.1126/science.194.4270.1159. PMID 17790910. 

(154)^ Atomic Spectroscopy: A compendium of basic ideas, notation, data, and formulas.  National Institute of Standards and Technology (2007). 200728200718

(155)^ Fowles, G.R. (1989). Introduction to Modern Optics. Courier Dover. pp. 227233. ISBN 978-0-486-65957-2. 2021-01-07. https://web.archive.org/web/20210107160307/https://books.google.com/books?id=SL1n9TuJ5YMC&pg=PA227 2020825 

(156)^ Grupen, C. (2000). Physics of Particle Detection. AIP Conference Proceedings 536: 334. arXiv:physics/9906063. Bibcode: 2000AIPC..536....3G. doi:10.1063/1.1361756. 

(157)^ The Nobel Prize in Physics 1989.  The Nobel Foundation (2008). 20089282008924

(158)^ Ekstrom, P.; Wineland, David (1980). The isolated Electron. Scientific American 243 (2): 91101. Bibcode: 1980SciAm.243b.104E. doi:10.1038/scientificamerican0880-104. 2019-09-16. https://web.archive.org/web/20190916211444/https://tf.nist.gov/general/pdf/166.pdf 2008924. 

(159)^ Mauritsson, J.. Electron filmed for the first time ever.  Lund University. 20093252008917

(160)^ Mauritsson, J. (2008). Coherent Electron Scattering Captured by an Attosecond Quantum Stroboscope. Physical Review Letters 100 (7): 073003. arXiv:0708.1060. Bibcode: 2008PhRvL.100g3003M. doi:10.1103/PhysRevLett.100.073003. PMID 18352546. 

(161)^ Damascelli, A. (2004). Probing the Electronic Structure of Complex Systems by ARPES. Physica Scripta T109: 6174. arXiv:cond-mat/0307085. Bibcode: 2004PhST..109...61D. doi:10.1238/Physica.Topical.109a00061. 

(162)^ Image # L-1975-02972.  NASA (197544). 20081272008920

(163)^ Elmer, J. (200833). Standardizing the Art of Electron-Beam Welding.  Lawrence Livermore National Laboratory. 200892020081016

(164)^ Schultz, H. (1993). Electron Beam Welding. Woodhead Publishing. pp. 23. ISBN 978-1-85573-050-2. 2022-02-04. https://web.archive.org/web/20220204084011/https://books.google.com/books?id=I0xMo28DwcIC&pg=PA2 2020825 

(165)^ Benedict, G.F. (1987). Nontraditional Manufacturing Processes. Manufacturing engineering and materials processing. 19. CRC Press. p. 273. ISBN 978-0-8247-7352-6. 2022-02-04. https://web.archive.org/web/20220204084012/https://books.google.com/books?id=xdmNVSio8jUC&pg=PA273 2020825 

(166)^ Manfrinato, Vitor R.; et al. (2013). Resolution limits of electron-beam lithography towards the atomic scale. Nano Letters 13 (4): 15551558. doi:10.1021/nl304715p. 

(167)^ Madou, M.J. (2002). Fundamentals of Microfabrication: the Science of Miniaturization (2nd ed.). CRC Press. pp. 5354. ISBN 978-0-8493-0826-0. 2021-01-07. https://web.archive.org/web/20210107160805/https://books.google.com/books?id=9bk3gJeQKBYC&pg=PA53 2020825 

(168)^ Jongen, Y.; Herer, A. (25 May 1996). [no title cited]. APS/AAPT Joint Meeting. Electron Beam Scanning in Industrial Applications. American Physical Society. Bibcode:1996APS..MAY.H9902J

(169)^ Mobus, G. (2010). Nano-scale quasi-melting of alkali-borosilicate glasses under electron irradiatio. Journal of Nuclear Materials 396 (23): 264271. Bibcode: 2010JNuM..396..264M. doi:10.1016/j.jnucmat.2009.11.020. 

(170)^ Beddar, A.S.; Domanovic, Mary Ann; Kubu, Mary Lou; Ellis, Rod J.; Sibata, Claudio H.; Kinsella, Timothy J. (2001). Mobile linear accelerators for intraoperative radiation therapy. AORN Journal 74 (5): 700705. doi:10.1016/S0001-2092(06)61769-9. PMID 11725448. 

(171)^ Principles of Radiation Therapy (200761). 201311220131031

(172)^ Chao, A.W.; Tigner, M. (1999). Handbook of Accelerator Physics and Engineering. World Scientific. pp. 155, 188. ISBN 978-981-02-3500-0. 2022-02-04. https://web.archive.org/web/20220204071146/https://books.google.com/books?id=Z3J4SjftF1YC&pg=PA155 2020825 

(173)^ Oura, K. (2003). Surface Science: An Introduction. Springer Science+Business Media. pp. 145. ISBN 978-3-540-00545-2 

(174)^ Ichimiya, A.; Cohen, P.I. (2004). Reflection High-energy Electron Diffraction. Cambridge University Press. p. 1. ISBN 978-0-521-45373-8. 2022-02-04. https://web.archive.org/web/20220204084445/https://books.google.com/books?id=AUVbPerNxTcC&pg=PA1 2020825 

(175)^ Heppell, T.A. (1967). A combined low energy and reflection high energy electron diffraction apparatus. Journal of Scientific Instruments 44 (9): 686688. Bibcode: 1967JScI...44..686H. doi:10.1088/0950-7671/44/9/311. 

(176)^ McMullan, D. (1993). Scanning Electron Microscopy: 19281965.  University of Cambridge. 20093162009323

(177)^ Slayter, H.S. (1992). Light and electron microscopy. Cambridge University Press. p. 1. ISBN 978-0-521-33948-3. 2022-02-04. https://web.archive.org/web/20220204084446/https://books.google.com/books?id=LlePVS9oq7MC&pg=PA1 2020825 

(178)^ Cember, H. (1996). Introduction to Health Physics. McGraw-Hill Professional. pp. 4243. ISBN 978-0-07-105461-4. 2022-02-04. https://web.archive.org/web/20220204084443/https://books.google.com/books?id=obcmBZe9es4C&pg=PA42 2020825 

(179)^ Erni, R. (2009). Atomic-Resolution Imaging with a Sub-50-pm Electron Probe. Physical Review Letters 102 (9): 096101. Bibcode: 2009PhRvL.102i6101E. doi:10.1103/PhysRevLett.102.096101. PMID 19392535. 2020-01-02. https://web.archive.org/web/20200102164706/https://digital.library.unt.edu/ark:/67531/metadc927376/ 2018817. 

(180)^ Bozzola, J.J.; Russell, L.D. (1999). Electron Microscopy: Principles and Techniques for Biologists. Jones & Bartlett Publishers. pp. 12, 197199. ISBN 978-0-7637-0192-5. 2022-02-04. https://web.archive.org/web/20220204084447/https://books.google.com/books?id=RqSMzR-IXk0C&pg=PA12 2020825 

(181)^ Flegler, S.L.; Heckman, J.W. Jr.; Klomparens, K.L. (1995). Scanning and Transmission Electron Microscopy: An Introduction (Reprint ed.). Oxford University Press. pp. 4345. ISBN 978-0-19-510751-7 

(182)^ Bozzola, J.J.; Russell, L.D. (1999). Electron Microscopy: Principles and Techniques for Biologists (2nd ed.). Jones & Bartlett Publishers. p. 9. ISBN 978-0-7637-0192-5. 2022-02-04. https://web.archive.org/web/20220204084444/https://books.google.com/books?id=RqSMzR-IXk0C&pg=PA9 2020825 

(183)^ Freund, H.P.; Antonsen, T. (1996). Principles of Free-Electron Lasers. Springer. pp. 130. ISBN 978-0-412-72540-1. 2022-02-04. https://web.archive.org/web/20220204084620/https://books.google.com/books?id=73w9tqTgbiIC&pg=PA1 2020825 

(184)^ Kitzmiller, J.W. (1995). Television Picture Tubes and Other Cathode-Ray Tubes: Industry and Trade Summary. Diane Publishing. pp. 35. ISBN 978-0-7881-2100-5 

(185)^ Sclater, N. (1999). Electronic Technology Handbook. McGraw-Hill Professional. pp. 227228. ISBN 978-0-07-058048-0 

(186)^ The History of the Integrated Circuit.  The Nobel Foundation (2008). 200812120081018

推薦文献[編集]


, ︿20008ASIN 4535783179ISBN 978-4535783171 NCID BA47827882OCLC 835858506:20094951 

, I︿200812ASIN 4563024376ISBN 978-4-563-02437-6 NCID BA88185786OCLC 836205285:21522924 

, 2010123ASIN 4320034627ISBN 978-4-320-03462-4 NCID BB00852726OCLC 502981559:21708221 

  : 2015129ASIN 4791768493ISBN 978-4791768493 NCID BB1785557XOCLC 904952551:22534432 

    20 201571ASIN 4815808090ISBN 978-4815808099 NCID BB18929784OCLC 919566015:22615747 

    20 201571ASIN 4815808104ISBN 978-4815808105 NCID BB18929784OCLC 913193126:22615751 

[]

外部リンク[編集]


The Discovery of the Electron ().  . 2005720

Particle Data Group ().  . 2003726

Bock, R.K.; Vasilescu, A. (1998). The Particle Detector BriefBook (14th ed.). Springer. ISBN 978-3-540-64120-9. 2008-05-26. https://web.archive.org/web/20080526082325/http://rkb.home.cern.ch/rkb/titleD.html 

Copeland, Ed. Spherical Electron (). Sixty Symbols (60).  Brady Haran. 2013426

Fundamental Physical Constants  Atomic and Nuclear Constants (  ) (PDF).  NIST. 2019814

() -