Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 

















Editing Binary black hole

















Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Page information
Get shortened URL
Download QR code
Wikidata item
 
















Appearance
   

 










You are not logged in. Your IP address will be publicly visible if you make any edits. If you log inorcreate an account, your edits will be attributed to a username, among other benefits.

 Content that violates any copyrights will be deleted. Encyclopedic content must be verifiable through citations to reliable sources.


Latest revision Your text
Line 1: Line 1:

{{Short description|System consisting of two black holes in close orbit around each other}}

{{Short description|System consisting of two black holes in close orbit around each other}}

[[File:BBH gravitational lensing of gw150914.webm|thumb|300px|Computer simulation of the black hole binary system [[GW150914]] as seen by a nearby observer, during its final inspiral, merge, and ringdown. The star field behind the black holes is being heavily distorted and appears to rotate and move, due to extreme [[gravitational lensing]], as [[space-time]] itself is distorted and dragged around by the rotating black holes.<ref>Credits: [http://www.black-holes.org SXS (Simulating eXtreme Spacetimes) project].</ref>]]

[[File:BBH gravitational lensing of gw150914.webm|thumb|300px|Computer simulation of the black hole binary system [[GW150914]] as seen by a nearby observer, during its final inspiral, merge, and ringdown. The star field behind the black holes is being heavily distorted and appears to rotate and move, due to extreme [[gravitational lensing]], as [[space-time]] itself is distorted and dragged around by the rotating black holes.<ref>Credits: [http://www.black-holes.org SXS (Simulating eXtreme Spacetimes) project].</ref>]]

A '''binary black hole''' ('''BBH'''), or '''black hole binary''', is a system consisting of two [[black hole]]s in close orbit around each other. Like black holes themselves, binary black holes are often divided into [[stellar black hole|stellar]] binary black holes, formed either as remnants of high-mass [[binary star]] systems or by [[stellar dynamics|dynamic processes]] and mutual capture; and binary [[supermassive black holes]], believed to be a result of [[galactic merger]]s.

A '''binary black hole''' ('''BBH''') is a system consisting of two [[black hole]]s in close orbit around each other. Like black holes themselves, binary black holes are often divided into [[stellar black hole|stellar]] binary black holes, formed either as remnants of high-mass [[binary star]] systems or by [[stellar dynamics|dynamic processes]] and mutual capture; and binary [[supermassive black holes]], believed to be a result of [[galactic merger]]s.



For many years, proving the existence of binary black holes was made difficult because of the nature of black holes themselves and the limited means of detection available. However, in the event that a pair of black holes were to merge, an immense amount of energy should be given off as [[gravitational wave]]s, with distinctive [[waveform]]s that can be calculated using [[general relativity]].<ref name="Pretorius2005">{{cite journal |last1=Pretorius |first1=Frans |title=Evolution of Binary Black-Hole Spacetimes |journal=Physical Review Letters |volume=95 |issue=12 |pages=121101 |year=2005 |issn=0031-9007 |doi=10.1103/PhysRevLett.95.121101 |pmid=16197061 |arxiv=gr-qc/0507014 |bibcode=2005PhRvL..95l1101P |s2cid=24225193}}</ref><ref name="CampanelliLousto2006">{{cite journal |last1=Campanelli |first1=M. |last2=Lousto |first2=C. O. |last3=Marronetti |first3=P. |last4=Zlochower |first4=Y. |title=Accurate Evolutions of Orbiting Black-Hole Binaries without Excision |journal=Physical Review Letters |volume=96 |issue=11 |pages=111101 |year=2006 |issn=0031-9007 |doi=10.1103/PhysRevLett.96.111101 |pmid=16605808 |arxiv=gr-qc/0511048 |bibcode=2006PhRvL..96k1101C |s2cid=5954627}}</ref><ref name="BakerCentrella2006">{{cite journal |last1=Baker |first1=John G. |last2=Centrella |first2=Joan |author2-link=Joan Centrella |last3=Choi |first3=Dae-Il |last4=Koppitz |first4=Michael |last5=van Meter |first5=James |title=Gravitational-Wave Extraction from an Inspiraling Configuration of Merging Black Holes |journal=Physical Review Letters |volume=96 |issue=11 |pages=111102 |year=2006 |issn=0031-9007 |doi=10.1103/PhysRevLett.96.111102 |pmid=16605809 |arxiv=gr-qc/0511103 |bibcode=2006PhRvL..96k1102B |s2cid=23409406}}</ref> Therefore, during the late 20th and early 21st century, binary black holes became of great interest scientifically as a potential source of such waves and a means by which gravitational waves could be proven to exist. Binary black hole mergers would be one of the strongest known sources of gravitational waves in the universe, and thus offer a good chance of [[Gravitational wave#Detection|directly detecting such waves]]. As the orbiting black holes give off these waves, the orbit decays, and the orbital period decreases. This stage is called binary black hole inspiral. The black holes will merge once they are close enough. Once merged, the single hole settles down to a stable form, via a stage called ringdown, where any distortion in the shape is dissipated as more gravitational waves.<ref>{{cite journal |last=Abadie |first=J. |author2=LIGO Scientific Collaboration |author3=The Virgo Collaboration |title=Search for gravitational waves from binary black hole inspiral, merger and ringdown |journal=Physical Review D |volume=83 |issue=12 |pages=122005 |doi=10.1103/PhysRevD.83.122005 |bibcode = 2011PhRvD..83l2005A |arxiv=1102.3781 |year=2011 |last4=Abernathy |first4=M. |last5=Accadia |first5=T. |last6=Acernese |first6=F. |last7=Adams |first7=C. |last8=Adhikari |first8=R. |last9=Ajith |first9=P. |last10=Allen |first10=B. |last11=Allen |first11=G. S. |last12=Amador Ceron |first12=E. |last13=Amin |first13=R. S. |last14=Anderson |first14=S. B. |last15=Anderson |first15=W. G. |last16=Antonucci |first16=F. |last17=Arain |first17=M. A. |last18=Araya |first18=M. C. |last19=Aronsson |first19=M. |last20=Aso |first20=Y. |last21=Aston |first21=S. M. |last22=Astone |first22=P. |last23=Atkinson |first23=D. |last24=Aufmuth |first24=P. |last25=Aulbert |first25=C. |last26=Babak |first26=S. |last27=Baker |first27=P. |last28=Ballardin |first28=G. |last29=Ballinger |first29=T. |last30=Ballmer |first30=S. |display-authors=1 |s2cid=174250}}</ref> In the final fraction of a second the black holes can reach extremely high velocity, and the gravitational wave amplitude reaches its peak.

For many years, proving the existence of binary black holes was made difficult because of the nature of black holes themselves and the limited means of detection available. However, in the event that a pair of black holes were to merge, an immense amount of energy should be given off as [[gravitational wave]]s, with distinctive [[waveform]]s that can be calculated using [[general relativity]].<ref name="Pretorius2005">{{cite journal |last1=Pretorius |first1=Frans |title=Evolution of Binary Black-Hole Spacetimes |journal=Physical Review Letters |volume=95 |issue=12 |pages=121101 |year=2005 |issn=0031-9007 |doi=10.1103/PhysRevLett.95.121101 |pmid=16197061 |arxiv=gr-qc/0507014 |bibcode=2005PhRvL..95l1101P |s2cid=24225193}}</ref><ref name="CampanelliLousto2006">{{cite journal |last1=Campanelli |first1=M. |last2=Lousto |first2=C. O. |last3=Marronetti |first3=P. |last4=Zlochower |first4=Y. |title=Accurate Evolutions of Orbiting Black-Hole Binaries without Excision |journal=Physical Review Letters |volume=96 |issue=11 |pages=111101 |year=2006 |issn=0031-9007 |doi=10.1103/PhysRevLett.96.111101 |pmid=16605808 |arxiv=gr-qc/0511048 |bibcode=2006PhRvL..96k1101C |s2cid=5954627}}</ref><ref name="BakerCentrella2006">{{cite journal |last1=Baker |first1=John G. |last2=Centrella |first2=Joan |author2-link=Joan Centrella |last3=Choi |first3=Dae-Il |last4=Koppitz |first4=Michael |last5=van Meter |first5=James |title=Gravitational-Wave Extraction from an Inspiraling Configuration of Merging Black Holes |journal=Physical Review Letters |volume=96 |issue=11 |pages=111102 |year=2006 |issn=0031-9007 |doi=10.1103/PhysRevLett.96.111102 |pmid=16605809 |arxiv=gr-qc/0511103 |bibcode=2006PhRvL..96k1102B |s2cid=23409406}}</ref> Therefore, during the late 20th and early 21st century, binary black holes became of great interest scientifically as a potential source of such waves and a means by which gravitational waves could be proven to exist. Binary black hole mergers would be one of the strongest known sources of gravitational waves in the universe, and thus offer a good chance of [[Gravitational wave#Detection|directly detecting such waves]]. As the orbiting black holes give off these waves, the orbit decays, and the orbital period decreases. This stage is called binary black hole inspiral. The black holes will merge once they are close enough. Once merged, the single hole settles down to a stable form, via a stage called ringdown, where any distortion in the shape is dissipated as more gravitational waves.<ref>{{cite journal |last=Abadie |first=J. |author2=LIGO Scientific Collaboration |author3=The Virgo Collaboration |title=Search for gravitational waves from binary black hole inspiral, merger and ringdown |journal=Physical Review D |volume=83 |issue=12 |pages=122005 |doi=10.1103/PhysRevD.83.122005 |bibcode = 2011PhRvD..83l2005A |arxiv=1102.3781 |year=2011 |last4=Abernathy |first4=M. |last5=Accadia |first5=T. |last6=Acernese |first6=F. |last7=Adams |first7=C. |last8=Adhikari |first8=R. |last9=Ajith |first9=P. |last10=Allen |first10=B. |last11=Allen |first11=G. S. |last12=Amador Ceron |first12=E. |last13=Amin |first13=R. S. |last14=Anderson |first14=S. B. |last15=Anderson |first15=W. G. |last16=Antonucci |first16=F. |last17=Arain |first17=M. A. |last18=Araya |first18=M. C. |last19=Aronsson |first19=M. |last20=Aso |first20=Y. |last21=Aston |first21=S. M. |last22=Astone |first22=P. |last23=Atkinson |first23=D. |last24=Aufmuth |first24=P. |last25=Aulbert |first25=C. |last26=Babak |first26=S. |last27=Baker |first27=P. |last28=Ballardin |first28=G. |last29=Ballinger |first29=T. |last30=Ballmer |first30=S. |display-authors=1 |s2cid=174250}}</ref> In the final fraction of a second the black holes can reach extremely high velocity, and the gravitational wave amplitude reaches its peak.

By publishing changes, you agree to the Terms of Use, and you irrevocably agree to release your contribution under the CC BY-SA 4.0 License and the GFDL. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel Editing help (opens in new window)

Copy and paste: – — ° ′ ″ ≈ ≠ ≤ ≥ ± − × ÷ ← → · §   Cite your sources: <ref></ref>


{{}}   {{{}}}   |   []   [[]]   [[Category:]]   #REDIRECT [[]]   &nbsp;   <s></s>   <sup></sup>   <sub></sub>   <code></code>   <pre></pre>   <blockquote></blockquote>   <ref></ref> <ref name="" />   {{Reflist}}   <references />   <includeonly></includeonly>   <noinclude></noinclude>   {{DEFAULTSORT:}}   <nowiki></nowiki>   <!-- -->   <span class="plainlinks"></span>


Symbols: ~ | ¡ ¿ † ‡ ↔ ↑ ↓ • ¶   # ∞   ‹› «»   ¤ ₳ ฿ ₵ ¢ ₡ ₢ $ ₫ ₯ € ₠ ₣ ƒ ₴ ₭ ₤ ℳ ₥ ₦ № ₧ ₰ £ ៛ ₨ ₪ ৳ ₮ ₩ ¥   ♠ ♣ ♥ ♦   𝄫 ♭ ♮ ♯ 𝄪   © ® ™
Latin: A a Á á À à  â Ä ä Ǎ ǎ Ă ă Ā ā à ã Å å Ą ą Æ æ Ǣ ǣ   B b   C c Ć ć Ċ ċ Ĉ ĉ Č č Ç ç   D d Ď ď Đ đ Ḍ ḍ Ð ð   E e É é È è Ė ė Ê ê Ë ë Ě ě Ĕ ĕ Ē ē Ẽ ẽ Ę ę Ẹ ẹ Ɛ ɛ Ǝ ǝ Ə ə   F f   G g Ġ ġ Ĝ ĝ Ğ ğ Ģ ģ   H h Ĥ ĥ Ħ ħ Ḥ ḥ   I i İ ı Í í Ì ì Î î Ï ï Ǐ ǐ Ĭ ĭ Ī ī Ĩ ĩ Į į Ị ị   J j Ĵ ĵ   K k Ķ ķ   L l Ĺ ĺ Ŀ ŀ Ľ ľ Ļ ļ Ł ł Ḷ ḷ Ḹ ḹ   M m Ṃ ṃ   N n Ń ń Ň ň Ñ ñ Ņ ņ Ṇ ṇ Ŋ ŋ   O o Ó ó Ò ò Ô ô Ö ö Ǒ ǒ Ŏ ŏ Ō ō Õ õ Ǫ ǫ Ọ ọ Ő ő Ø ø Œ œ   Ɔ ɔ   P p   Q q   R r Ŕ ŕ Ř ř Ŗ ŗ Ṛ ṛ Ṝ ṝ   S s Ś ś Ŝ ŝ Š š Ş ş Ș ș Ṣ ṣ ß   T t Ť ť Ţ ţ Ț ț Ṭ ṭ Þ þ   U u Ú ú Ù ù Û û Ü ü Ǔ ǔ Ŭ ŭ Ū ū Ũ ũ Ů ů Ų ų Ụ ụ Ű ű Ǘ ǘ Ǜ ǜ Ǚ ǚ Ǖ ǖ   V v   W w Ŵ ŵ   X x   Y y Ý ý Ŷ ŷ Ÿ ÿ Ỹ ỹ Ȳ ȳ   Z z Ź ź Ż ż Ž ž   ß Ð ð Þ þ Ŋ ŋ Ə ə
Greek: Ά ά Έ έ Ή ή Ί ί Ό ό Ύ ύ Ώ ώ   Α α Β β Γ γ Δ δ   Ε ε Ζ ζ Η η Θ θ   Ι ι Κ κ Λ λ Μ μ   Ν ν Ξ ξ Ο ο Π π   Ρ ρ Σ σ ς Τ τ Υ υ   Φ φ Χ χ Ψ ψ Ω ω   {{Polytonic|}}
Cyrillic: А а Б б В в Г г   Ґ ґ Ѓ ѓ Д д Ђ ђ   Е е Ё ё Є є Ж ж   З з Ѕ ѕ И и І і   Ї ї Й й Ј ј К к   Ќ ќ Л л Љ љ М м   Н н Њ њ О о П п   Р р С с Т т Ћ ћ   У у Ў ў Ф ф Х х   Ц ц Ч ч Џ џ Ш ш   Щ щ Ъ ъ Ы ы Ь ь   Э э Ю ю Я я   ́
IPA: t̪ d̪ ʈ ɖ ɟ ɡ ɢ ʡ ʔ   ɸ β θ ð ʃ ʒ ɕ ʑ ʂ ʐ ç ʝ ɣ χ ʁ ħ ʕ ʜ ʢ ɦ   ɱ ɳ ɲ ŋ ɴ   ʋ ɹ ɻ ɰ   ʙ ⱱ ʀ ɾ ɽ   ɫ ɬ ɮ ɺ ɭ ʎ ʟ   ɥ ʍ ɧ   ʼ   ɓ ɗ ʄ ɠ ʛ   ʘ ǀ ǃ ǂ ǁ   ɨ ʉ ɯ   ɪ ʏ ʊ   ø ɘ ɵ ɤ   ə ɚ   ɛ œ ɜ ɝ ɞ ʌ ɔ   æ   ɐ ɶ ɑ ɒ   ʰ ʱ ʷ ʲ ˠ ˤ ⁿ ˡ   ˈ ˌ ː ˑ ̪   {{IPA|}}

Wikidata entities used in this page

Pages transcluded onto the current version of this page (help):

This page is a member of 7 hidden categories (help):


Retrieved from "https://en.wikipedia.org/wiki/Binary_black_hole"







Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki