Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 

















Editing Carbonaceous chondrite

















Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Page information
Get shortened URL
Download QR code
Wikidata item
 
















Appearance
   

 










You are not logged in. Your IP address will be publicly visible if you make any edits. If you log inorcreate an account, your edits will be attributed to a username, among other benefits.

 Content that violates any copyrights will be deleted. Encyclopedic content must be verifiable through citations to reliable sources.


Latest revision Your text
Line 1: Line 1:

{{Short description|Class of chondritic meteorites}}

{{Infobox meteorite subdivision

{{Infobox meteorite subdivision

|Subdivision = Class

|Subdivision = Class

Line 19: Line 18:

|Image2_alt_text =

|Image2_alt_text =

}}

}}

'''Carbonaceous chondrites''' or '''C chondrites''' are a class of [[chondrite|chondritic]] meteorites comprising at least 8 known groups and many ungrouped [[meteorite]]s. They include some of the most primitive known meteorites. The C chondrites represent only a small proportion (4.6%)<ref>{{cite journal |last1=Bischoff |first1=A. |last2=Geiger |first2=T. |title=Meteorites for the Sahara: Find locations, shock classification, degree of weathering and pairing |journal=Meteoritics |issn=0026-1114 |volume=30 |issue=1 |pages=113–122 |year=1995 |bibcode=1995Metic..30..113B |doi=10.1111/j.1945-5100.1995.tb01219.x|doi-access=free }}</ref> of [[meteorite fall]]s.

'''Carbonaceous chondrites''' or '''C chondrites''' are a class of [[chondrite|chondritic]] [[meteorite]]s comprising at least 8 known groups and many ungrouped meteorites. They include some of the most primitive known meteorites. The C chondrites represent only a small proportion (4.6%)<ref>{{cite journal |last1=Bischoff |first1=A. |last2=Geiger |first2=T. |title=Meteorites for the Sahara: Find locations, shock classification, degree of weathering and pairing |journal=Meteoritics |issn=0026-1114 |volume=30 |issue=1 |pages=113–122 |year=1995 |bibcode=1995Metic..30..113B |doi=10.1111/j.1945-5100.1995.tb01219.x}}</ref> of [[meteorite fall]]s.



Some famous carbonaceous chondrites are: [[Allende meteorite|Allende]], [[Murchison meteorite|Murchison]], [[Orgueil (meteorite)|Orgueil]], [[Ivuna meteorite|Ivuna]], [[Murray meteorite|Murray]], [[Tagish Lake (meteorite)|Tagish Lake]], [[Sutter's Mill meteorite|Sutter's Mill]] and [[Winchcombe meteorite|Winchcombe]].

Some famous carbonaceous chondrites are: [[Allende meteorite|Allende]], [[Murchison meteorite|Murchison]], [[Orgueil (meteorite)|Orgueil]], [[Ivuna meteorite|Ivuna]], [[Murray meteorite|Murray]], [[Tagish Lake (meteorite)|Tagish Lake]], [[Sutter's Mill meteorite|Sutter's Mill]] and [[Winchcombe meteorite|Winchcombe]].



== General description ==

== General description ==

C chondrites contain a relatively high proportion of carbon (up to 3%), which is in the form of [[graphite]], [[carbonate]]s and organic compounds, including [[amino acid]]s. In addition, they contain water and minerals that have been modified by the influence of water.<ref>BÜHLER: . Springer-Verlag, 2013, {{ISBN|978-3-0348-6667-5}} , pp. 130 ( limited preview in Google Books search).</ref>

C chondrites contain a high proportion of carbon (up to 3%), which is in the form of [[graphite]] , [[Carbonate|carbonates]] and organic compounds, including [[amino acid]]s. In addition, they contain water and minerals that have been modified by the influence of water. <ref>BÜHLER: . Springer-Verlag, 2013, <nowiki>ISBN 978-3-0348-6667-5</nowiki> , pp. 130 ( limited preview in Google Book search).</ref>



The carbonaceous chondrites were not exposed to higher temperatures, so that they are hardly changed by thermal processes. Some carbonaceous chondrites, such as the [[Allende meteorite]], contain calcium-aluminum-rich inclusions (CAIs). These are compounds that emerged early from the primeval [[Formation and evolution of the Solar System|solar nebula]], condensed out and represent the oldest minerals formed in the [[Solar System]].<ref>Horst Rauchfuss:. Springer-Verlag, 2006, {{ISBN|978-3-540-27666-1}} , pp. 83 ( limited preview in Google Books search).</ref><ref>Gregor Markl: . Springer-Verlag, 2014, {{ISBN|978-3-662-44628-7}} , pp. 420 ( limited preview in Google Book Search).</ref>

The carbonaceous chondrites were not exposed to higher temperatures, so that they are hardly changed by thermal processes. Some carbonaceous chondrites, such as the [[Allende meteorite]], contain calcium-aluminum-rich inclusions (CAIs). These are compounds that emerged early from the primeval [[Formation and evolution of the Solar System|solar nebula]], condensed out and represent the oldest minerals formed in the [[Solar System|solar system]] .<ref>Horst Rauchfuss:. Springer-Verlag, 2006, <nowiki>ISBN 978-3-540-27666-1</nowiki> , pp. 83 ( limited preview in Google Book search).</ref><ref>Gregor Markl: . Springer-Verlag, 2014, <nowiki>ISBN 978-3-662-44628-7</nowiki> , pp. 420 ( limited preview in Google Book Search).</ref>



Some primitive carbonaceous chondrites, such as the CM chondrite [[Murchison meteorite|Murchison]], contain presolar minerals, including [[moissanite]] (natural [[silicon carbide]]) and tiny nanometer-sized diamonds that apparently were not formed in our solar system. These presolar minerals were probably formed during the explosion of a nearby [[supernova]] or in the vicinity of a pulsating [[red giant]] (more precisely: a so-called [[Asymptotic giant branch|AGB star]]) before they got into the cloud of matter from which the Solar System was formed. Such star explosions release pressure waves that can condense clouds of matter in their surroundings, leading to the formation of new ones, stars and [[planetary systems]].<ref>Martin Vieweg: Ancient carbonates are evidence of water, on: Wissenschaft.de from January 22, 2021 The oldest carbonates in the solar system , on: EurekAlert! from January 20, 2021</ref>

Some primitive carbonaceous chondrites, such as the CM chondrite [[Murchison meteorite|Murchison]], contain presolar minerals, including [[silicon carbide]] and tiny nanometer-sized diamonds that apparently were not formed in our solar system. These presolar minerals were probably formed during the explosion of a nearby [[supernova]] or in the vicinity of a pulsating [[red giant]] (more precisely: a so-called [[Asymptotic giant branch|AGB star]] ) before they got into the cloud of matter from which our solar system was formed. Such star explosions release pressure waves that can condense clouds of matter in their surroundings, leading to the formation of new ones, stars and solar systems.<ref>Martin Vieweg: Ancient carbonates are evidence of water , on: Wissenschaft.de from January 22, 2021 The oldest carbonates in the solar system , on: EurekAlert! from January 20, 2021</ref>



Another carbonaceous chondrite, the Flensburg meteorite (2019), provides evidence of the earliest known occurrence of liquid water in the young Solar System to date.<ref>Addi Bischof et al.: ''[https://www.sciencedirect.com/science/article/pii/S0016703720306463?dgcid=rss_sd_all The old, unique C1 chondrite Flensburg – Insight into the first processes of aqueous alteration, brecciation, and the diversity of water-bearing parent bodies and lithologies]''. In: Geochimica et Cosmochimica Acta, Vol. 293, 15 January 2021, pages 142-186</ref><ref>Robert Hutchison: Cambridge University Press, 2006, {{ISBN|978-0-521-03539-2}}, pp. 42 (limited preview in Google Books search).</ref>

Another carbonaceous chondrite, the Flensburg meteorite (2019), provides evidence of the earliest known occurrence of liquid water in the young solar system to date.<ref>Addi Bischof et al.: ''[https://www.sciencedirect.com/science/article/pii/S0016703720306463?dgcid=rss_sd_all The old, unique C1 chondrite Flensburg – Insight into the first processes of aqueous alteration, brecciation, and the diversity of water-bearing parent bodies and lithologies]''. In: Geochimica et Cosmochimica Acta, Vol. 293, 15 January 2021, pages 142-186</ref><ref>Robert Hutchison: Cambridge University Press, 2006, <nowiki>ISBN 978-0-521-03539-2</nowiki>, pp. 42 (limited preview in Google Book search).</ref>



==Composition and classification==

==Composition and classification==

Line 43: Line 42:

CI chondrites typically contain a high proportion of water (up to 22%),<ref name=norton /> and organic matter in the form of [[amino acid]]s<ref name=ehrenfreund>{{cite journal |last=Ehrenfreund |first=Pascale |author2=Daniel P. Glavin |author3=Oliver Botta |author4=George Cooper |author5=Jeffrey L. Bada |year=2001 |title=Extraterrestrial amino acids in Orgueil and Ivuna: Tracing the parent body of CI type carbonaceous chondrites |journal=Proceedings of the National Academy of Sciences |volume=98 |issue=5 |pages=2138–2141 |doi=10.1073/pnas.051502898 |pmid=11226205 |pmc=30105|bibcode = 2001PNAS...98.2138E |doi-access=free }}</ref> and [[Polycyclic aromatic hydrocarbon|PAH]]s.<ref>{{cite journal |last=Wing |first=Michael R. |author2=Jeffrey L. Bada |year=1992 |title=The origin of the polycyclic aromatic hydrocarbons in meteorites |journal=Origins of Life and Evolution of the Biosphere |volume=21 |issue=5–6 |pages=375–383 |doi=10.1007/BF01808308 |bibcode = 1991OLEB...21..375W |s2cid=11504324 }}</ref> Aqueous alteration promotes a composition of hydrous [[Silicate minerals#Phyllosilicates|phyllosilicate]]s, [[magnetite]], and [[olivine]] crystals occurring in a black matrix, and a possible lack of [[chondrule]]s. It is thought they have not been heated above {{convert|50|°C|°F|abbr=on}}, indicating that they condensed in the cooler outer portion of the solar nebula.

CI chondrites typically contain a high proportion of water (up to 22%),<ref name=norton /> and organic matter in the form of [[amino acid]]s<ref name=ehrenfreund>{{cite journal |last=Ehrenfreund |first=Pascale |author2=Daniel P. Glavin |author3=Oliver Botta |author4=George Cooper |author5=Jeffrey L. Bada |year=2001 |title=Extraterrestrial amino acids in Orgueil and Ivuna: Tracing the parent body of CI type carbonaceous chondrites |journal=Proceedings of the National Academy of Sciences |volume=98 |issue=5 |pages=2138–2141 |doi=10.1073/pnas.051502898 |pmid=11226205 |pmc=30105|bibcode = 2001PNAS...98.2138E |doi-access=free }}</ref> and [[Polycyclic aromatic hydrocarbon|PAH]]s.<ref>{{cite journal |last=Wing |first=Michael R. |author2=Jeffrey L. Bada |year=1992 |title=The origin of the polycyclic aromatic hydrocarbons in meteorites |journal=Origins of Life and Evolution of the Biosphere |volume=21 |issue=5–6 |pages=375–383 |doi=10.1007/BF01808308 |bibcode = 1991OLEB...21..375W |s2cid=11504324 }}</ref> Aqueous alteration promotes a composition of hydrous [[Silicate minerals#Phyllosilicates|phyllosilicate]]s, [[magnetite]], and [[olivine]] crystals occurring in a black matrix, and a possible lack of [[chondrule]]s. It is thought they have not been heated above {{convert|50|°C|°F|abbr=on}}, indicating that they condensed in the cooler outer portion of the solar nebula.



Five CI chondrites have been observed to fall: [[Ivuna meteorite|Ivuna]], [[Orgueil (meteorite)|Orgueil]], [[Alais meteorite|Alais]], [[Tonk meteorite|Tonk]], and [[Revelstoke meteorite|Revelstoke]]. Four others have been found by Japanese field parties in Antarctica. In general, the extreme fragility of CI&nbsp;chondrites causes them to be highly susceptible to terrestrial weathering, and they do not survive on Earth's surface for long after they fall.

Six CI chondrites have been observed to fall: [[Ivuna meteorite|Ivuna]], [[Orgueil (meteorite)|Orgueil]], [[Alais meteorite|Alais]], [[Tonk meteorite|Tonk]], [[Revelstoke meteorite|Revelstoke]], and [[Flensburg (meteorite)|Flensburg]]. Several others have been found by Japanese field parties in Antarctica. In general, the extreme fragility of CI&nbsp;chondrites causes them to be highly susceptible to terrestrial weathering, and they do not survive on Earth's surface for long after they fall.



===CV group===

===CV group===

Line 66: Line 65:

| access-date = 2012-05-06}}</ref><ref name="Pearce & Pudritz (2015)">{{cite journal|last1=Pearce|first1=Ben K. D.|last2=Pudritz|first2=Ralph E.|title=Seeding the Pregenetic Earth: Meteoritic Abundances of Nucleobases and Potential Reaction Pathways|journal=Astrophysical Journal|date=2015|volume=807|issue=1|page=85|doi=10.1088/0004-637X/807/1/85|arxiv = 1505.01465 |bibcode = 2015ApJ...807...85P |s2cid=93561811}}</ref>

| access-date = 2012-05-06}}</ref><ref name="Pearce & Pudritz (2015)">{{cite journal|last1=Pearce|first1=Ben K. D.|last2=Pudritz|first2=Ralph E.|title=Seeding the Pregenetic Earth: Meteoritic Abundances of Nucleobases and Potential Reaction Pathways|journal=Astrophysical Journal|date=2015|volume=807|issue=1|page=85|doi=10.1088/0004-637X/807/1/85|arxiv = 1505.01465 |bibcode = 2015ApJ...807...85P |s2cid=93561811}}</ref>

CM chondrite famous falls:

CM chondrite famous falls:

*[[Murchison meteorite|Murchison]]

*[[Murchison meteorite |Murchison]]

*[[Sutter's Mill meteorite|Sutter's Mill]]

*[[Sutter's Mill meteorite|Sutter's Mill]]

*Aguas Zarcas<ref>{{Cite web|title=Meteoritical Bulletin: Entry for Aguas Zarcas|url=https://www.lpi.usra.edu/meteor/metbull.php?sea=Aguas+Zarcas&sfor=names&ants=&nwas=&falls=&valids=&stype=&lrec=50&map=ge&browse=&country=All&srt=&categ=All&mblist=All&rect=&phot=&strewn=&snew=0&pnt=Normal%20table&code=69696|access-date=2020-08-21|website=www.lpi.usra.edu}}</ref><ref>https://www.science.org/content/article/unusual-meteorite-more-valuable-gold-may-hold-building-blocks-life </ref>

*[https://www.sciencemag.org/news/2020/08/unusual-meteorite-more-valuable-gold-may-hold-building-blocks-life Aguas Zarcas]<ref>{{Cite web|title=Meteoritical Bulletin: Entry for Aguas Zarcas|url=https://www.lpi.usra.edu/meteor/metbull.php?sea=Aguas+Zarcas&sfor=names&ants=&nwas=&falls=&valids=&stype=&lrec=50&map=ge&browse=&country=All&srt=&categ=All&mblist=All&rect=&phot=&strewn=&snew=0&pnt=Normal%20table&code=69696|access-date=2020-08-21|website=www.lpi.usra.edu}}</ref>

*[[Jbilet Winselwan meteorite|Jbilet Winselwan]]

*[[Jbilet Winselwan meteorite|Jbilet Winselwan]]

*[[Winchcombe meteorite]]

*[[Winchcombe meteorite]]

Line 89: Line 88:


===CB group===

===CB group===

[[File:Gujba meteorite, bencubbinite (14785860604).jpg|thumb|Gujba meteorite, a bencubbinite found in Nigeria. Polished slice, 4.6&nbsp;×&nbsp;3.8&nbsp;cm. Note the nickel-iron chondrules, which have been age-dated to 4.5627 billion years.]]

[[File:Gujba meteorite, bencubbinite (14785860604).jpg|thumb|Gujba meteorite, a bencubbinite found in Nigeria. Polished slice, 4.6&nbsp;x&nbsp;3.8&nbsp;cm. Note the nickel-iron chondrules, which have been age-dated to 4.5627 billion years.]]

The group takes its name from the most representative member: [https://www.lpi.usra.edu/meteor/metbull.php?sea=Bencubbin&sfor=names&ants=&nwas=&falls=&valids=&stype=contains&lrec=50&map=ge&browse=&country=All&srt=name&categ=All&mblist=All&rect=&phot=&strewn=&snew=0&pnt=Normal%20table&code=5014 Bencubbin] (Australia). Although these chondrites contain over 50% nickel-iron metal, they are not classified as [[mesosiderite]]s because their mineralogical and chemical properties are strongly associated with CR chondrites.<ref name="meteoritefrcarb" />

The group takes its name from the most representative member: [https://www.lpi.usra.edu/meteor/metbull.php?sea=Bencubbin&sfor=names&ants=&nwas=&falls=&valids=&stype=contains&lrec=50&map=ge&browse=&country=All&srt=name&categ=All&mblist=All&rect=&phot=&strewn=&snew=0&pnt=Normal%20table&code=5014 Bencubbin] (Australia). Although these chondrites contain over 50% nickel-iron metal, they are not classified as [[mesosiderite]]s because their mineralogical and chemical properties are strongly associated with CR chondrites.<ref name="meteoritefrcarb" />



Line 106: Line 105:

Famous finds:

Famous finds:

*[[Dar al Gani 749]]

*[[Dar al Gani 749]]


===CL group===

Officially recognized in 2022<ref>{{cite journal |last1=Gattacceca |first1=Jérôme |last2=McCubbin F. M. |last3=Grossman J. |last4=Bouvier A. |last5=Chabot N. L. |last6=D'Orazio M. |last7=Goodrich C. |last8=Greshake A. |last9=Gross J. |last10=Komatsu M. |last11=Miao B. |last12=Schrader D. |title=The Meteoritical Bulletin, No. 110 |journal=Meteoritics and Planetary Science |date=2022 |volume=57 |issue=11 |pages=21022105|doi=10.1111/maps.13918 |bibcode=2022M&PS...57.2102G |hdl=11568/1160522 |s2cid=253089085 |url=https://hal-insu.archives-ouvertes.fr/insu-03863070/file/Meteorit%20Planetary%20Scien%20-%202022%20-%20Gattacceca%20-%20The%20Meteoritical%20Bulletin%20No%20110.pdf }}</ref> after minimum specimens (five) described.<ref>{{cite journal |last1=Metzler |first1=K. |last2=Hezel, D. C. |last3=Barosch, J. |last4=Wölfer, E. |last5=Schneider, J. M. |last6=Hellmann, J. L. |last7=Berndt, J. |display-authors=etal |title=The Loongana (CL) Group of Carbonaceous Chondrites |journal=Geochimica et Cosmochimica Acta |date=2021 |volume=304 |pages=1–31|doi=10.1016/j.gca.2021.04.007 |bibcode=2021GeCoA.304....1M |s2cid=234847404 |url=http://oro.open.ac.uk/76111/1/1-s2.0-S0016703721002222-main.pdf }}</ref> CL chondrites, named after type specimen(s) Loongana, are chondrite-rich, metal-rich, and volatile-poor.



===C ungrouped===

===C ungrouped===

Line 117: Line 113:

==Organic matter==

==Organic matter==

[[File:Murchison crop.jpg|thumb|200px|Murchison meteorite]]

[[File:Murchison crop.jpg|thumb|200px|Murchison meteorite]]

Ehrenfreund et al. (2001)<ref name=ehrenfreund /> found that amino acids in Ivuna and Orgueil were present at much lower concentrations than in CM chondrites (~30%), and that they had a distinct composition high in β-[[alanine]], [[glycine]], γ-[[Gamma-Aminobutyric acid|ABA]], and [[beta-Aminobutyric acid|β-ABA]] but low in [[2-Aminoisobutyric acid|α-aminoisobutyric acid (AIB)]] and [[isovaline]]. This implies that they had formed by a different synthetic pathway, and on a different parent body from the CM chondrites.

Most of the [[organic compound|organic]] [[carbon]] in CI and CM carbonaceous chondrites is an insoluble complex material. That is similar to the description for [[kerogen]]. A kerogen-like material is also in the [[ALH84001]] [[Martian meteorite]] (an [[achondrite]]).

Most of the [[organic compound|organic]] [[carbon]] in CI and CM carbonaceous chondrites is an insoluble complex material. That is similar to the description for [[kerogen]]. A kerogen-like material is also in the [[ALH84001]] [[Martian meteorite]] (an [[achondrite]]).



The CM meteorite [[Murchison meteorite|Murchison]] has over 96 extraterrestrial [[amino acid]]s and other compounds including [[carboxylic acid]]s, hydroxy carboxylic acids, sulphonic and phosphonic acids, aliphatic, aromatic and polar [[hydrocarbon]]s, [[fullerene]]s, [[heterocycle]]s, [[carbonyl]] compounds, [[Alcohol (chemistry)|alcohol]]s, [[amine]]s and [[amide]]s.

The CM meteorite [[Murchison meteorite|Murchison]] has over 70 extraterrestrial [[amino acid]]s and other compounds including [[carboxylic acid]]s, hydroxy carboxylic acids, sulphonic and phosphonic acids, aliphatic, aromatic and polar [[hydrocarbon]]s, [[fullerene]]s, [[heterocycle]]s, [[carbonyl]] compounds, [[alcohol]]s, [[amine]]s and [[amide]]s.


=== Extraterrestrial amino acids ===

Amino acids in carbonaceous chondrites have important implications for theories describing the delivery of organic compounds to the early Earth and the subsequent [[Abiogenesis|development of life]]. Shortly after its fall and recovery in Australia in 1969, the [[Murchison meteorite|Murchison]] meteorite was found to host five protein amino acids ([[glycine]], [[alanine]], [[valine]], [[proline]], and [[glutamic acid]]) in addition to 12 non-[[Proteinogenic amino acid|proteinogenic]] amino acids including [[2-Aminoisobutyric acid|α-aminoisobutyric]] acid and [[isovaline]], which are rare on Earth.<ref name=":0">{{Cite journal |last1=Kvenvolden |first1=Keith |last2=Lawless |first2=James |last3=Pering |first3=Katherine |last4=Peterson |first4=Etta |last5=Flores |first5=Jose |last6=Ponnamperuma |first6=Cyril |last7=Kaplan |first7=I. R. |last8=Moore |first8=Carleton |date=1970 |title=Evidence for Extraterrestrial Amino-acids and Hydrocarbons in the Murchison Meteorite |url=https://www.nature.com/articles/228923a0 |journal=Nature |language=en |volume=228 |issue=5275 |pages=923–926 |doi=10.1038/228923a0 |pmid=5482102 |bibcode=1970Natur.228..923K |s2cid=4147981 |issn=1476-4687}}</ref> Since then, the number of characterized amino acids in the Murchison meteorite has risen to 96, including 12 of the 20 common biological amino acids, along with hundreds more that have been detected, but remain uncharacterized.<ref>{{Citation |last1=Glavin |first1=Daniel P. |title=Chapter 3 - The Origin and Evolution of Organic Matter in Carbonaceous Chondrites and Links to Their Parent Bodies |date=2018-01-01 |url=https://www.sciencedirect.com/science/article/pii/B9780128133255000033 |work=Primitive Meteorites and Asteroids |pages=205–271 |editor-last=Abreu |editor-first=Neyda |access-date=2023-05-01 |publisher=Elsevier |language=en |doi=10.1016/b978-0-12-813325-5.00003-3 |isbn=978-0-12-813325-5 |last2=Alexander |first2=Conel M. O'D. |last3=Aponte |first3=José C. |last4=Dworkin |first4=Jason P. |last5=Elsila |first5=Jamie E. |last6=Yabuta |first6=Hikaru|hdl=2060/20180004493 |hdl-access=free }}</ref> While the abundance of amino acids present in terrestrial soils presents a potential source of contamination, most of the amino acids characterized in Murchison are terrestrially rare or absent.<ref>{{Citation |last1=Cronin |first1=John R. |title=Organic Matter in Meteorites: Molecular and Isotopic Analyses of the Murchison Meteorite |date=1993 |url=https://doi.org/10.1007/978-94-011-1936-8_9 |journal=The Chemistry of Life's Origins |pages=209–258 |editor-last=Greenberg |editor-first=J. M. |access-date=2023-05-01 |place=Dordrecht |publisher=Springer Netherlands |language=en |doi=10.1007/978-94-011-1936-8_9 |isbn=978-94-011-1936-8 |last2=Chang |first2=Sherwood |volume=416 |bibcode=1993ASIC..416..209C |editor2-last=Mendoza-Gómez |editor2-first=C. X. |editor3-last=Pirronello |editor3-first=V.}}</ref>


Amino acids may be structurally [[Chirality|chiral]], meaning that they have two possible non-superimposable mirror image structures, termed [[Enantiomer|enantiomers]]. Conventionally, these are referred to as left-handed (L) and right-handed (D) by analogy with [[glyceraldehyde]]. Living beings use L-amino acids, although there is no apparent reason why one enantiomer is favoured over the other as they behave equivalently in biological systems.<ref>{{Cite journal |last1=Milton |first1=R. C. deL. |last2=Milton |first2=S. C. F. |last3=Kent |first3=S. B. H. |date=1992-06-05 |title=Total Chemical Synthesis of a D-Enzyme: The Enantiomers of HIV-1 Protease Show Reciprocal Chiral Substrate Specificity |url=https://www.science.org/doi/10.1126/science.1604320 |journal=Science |language=en |volume=256 |issue=5062 |pages=1445–1448 |doi=10.1126/science.1604320 |pmid=1604320 |issn=0036-8075}}</ref> In contrast with terrestrial biology, early laboratory studies, including the famous [[Miller–Urey experiment|Miller-Urey Experiment]], have shown that amino acids may form under a range of possible abiotic conditions with equal (racemic) mixtures of D- and L-enantiomers.<ref>{{Cite journal |last=Miller |first=Stanley L. |date=1953-05-15 |title=A Production of Amino Acids Under Possible Primitive Earth Conditions |url=https://www.science.org/doi/10.1126/science.117.3046.528 |journal=Science |language=en |volume=117 |issue=3046 |pages=528–529 |doi=10.1126/science.117.3046.528 |pmid=13056598 |bibcode=1953Sci...117..528M |issn=0036-8075}}</ref> Thus, the ratios between enantiomers for a given amino acid may discriminate between biotic and abiotic formation mechanisms. In the first characterization of amino acids in Murchison, all chiral examples were present in racemic mixtures indicating an abiotic origin.<ref name=":0" /> This is consistent with proposed sythetic pathways, as the formation of isovaline and other α-dialkyl amino acids in CM chondrites has been attributed to the [[Strecker amino acid synthesis|Strecker synthesis]] which produces racemic mixtures of enantiomers.<ref>{{Cite journal |last1=Wolman |first1=Yecheskel |last2=Haverland |first2=William J. |last3=Miller |first3=Stanley L. |date=1972 |title=Nonprotein Amino Acids from Spark Discharges and Their Comparison with the Murchison Meteorite Amino Acids |journal=Proceedings of the National Academy of Sciences |language=en |volume=69 |issue=4 |pages=809–811 |doi=10.1073/pnas.69.4.809 |issn=0027-8424 |pmc=426569 |pmid=16591973 |bibcode=1972PNAS...69..809W |doi-access=free }}</ref>

[[File:Strecker-Synthese Übersicht V3.svg|thumb|400x400px|The Strecker synthesis of alpha amino acids from carbonyl compounds in the presence of ammonia and cyanide.]]

Ehrenfreund et al. (2001)<ref name="ehrenfreund" /> found that amino acids in CI chondrites Ivuna and Orgueil were present at much lower concentrations than in CM chondrites (~30%), and that they had a distinct composition high in β-[[alanine]], [[glycine]], γ-[[Gamma-Aminobutyric acid|ABA]], and [[beta-Aminobutyric acid|β-ABA]] but low in [[2-Aminoisobutyric acid|α-aminoisobutyric acid (AIB)]] and [[isovaline]]. This implies that they had formed by a different synthetic pathway, and on a different parent body from the CM chondrites.


==== Enantiomeric excesses observed in extraterrestrial amino acids ====

More recently, amino acids from several carbonaceous chondrites have been identified with significant L-enantiomeric excesses. L-excesses from 3 – 15% in several non-protein α-dialkyl amino acids have been found in the Murchison and Murray meteorites.<ref>{{Cite journal |last1=Cronin |first1=John R. |last2=Pizzarello |first2=Sandra |date=1997-02-14 |title=Enantiomeric Excesses in Meteoritic Amino Acids |url=https://www.science.org/doi/10.1126/science.275.5302.951 |journal=Science |language=en |volume=275 |issue=5302 |pages=951–955 |doi=10.1126/science.275.5302.951 |pmid=9020072 |bibcode=1997Sci...275..951C |s2cid=10979716 |issn=0036-8075}}</ref> Their extraterrestrial origin is indicated by their absence in biological systems and significant heavy [[isotope]] enrichments in <sup>13</sup>C and deuterium compared to terrestrial values.<ref>{{Cite journal |last1=Elsila |first1=Jamie E. |last2=Callahan |first2=Michael P. |last3=Glavin |first3=Daniel P. |last4=Dworkin |first4=Jason P. |last5=Brückner |first5=Hans |date=2011 |title=Distribution and Stable Isotopic Composition of Amino Acids from Fungal Peptaibiotics: Assessing the Potential for Meteoritic Contamination |url=http://www.liebertpub.com/doi/10.1089/ast.2010.0505 |journal=Astrobiology |language=en |volume=11 |issue=2 |pages=123–133 |doi=10.1089/ast.2010.0505 |pmid=21417942 |bibcode=2011AsBio..11..123E |issn=1531-1074}}</ref> Further characterization of L-isovaline excesses up to 20.5% in a range of carbonaceous chondrite groups have supported a hypothesis that increasing [[hydrothermal alteration]] of the host meteorite correlates with increasing observed L-enantiomeric excess.<ref>{{Cite journal |last1=Glavin |first1=Daniel P. |last2=Callahan |first2=Michael P. |last3=Dworkin |first3=Jason P. |last4=Elsila |first4=Jamie E. |date=2010 |title=The effects of parent body processes on amino acids in carbonaceous chondrites: Amino acids in carbonaceous chondrites |url=https://onlinelibrary.wiley.com/doi/10.1111/j.1945-5100.2010.01132.x |journal=Meteoritics & Planetary Science |language=en |volume=45 |issue=12 |pages=1948–1972 |doi=10.1111/j.1945-5100.2010.01132.x|hdl=2060/20100032396 |s2cid=62883414 |hdl-access=free }}</ref> Large L-excesses for α-H amino acids have also been reported, but these are more problematic due to the potential for terrestrial contamination.<ref>{{Cite journal |last1=Glavin |first1=Daniel P. |last2=Elsila |first2=Jamie E. |last3=McLain |first3=Hannah L. |last4=Aponte |first4=José C. |last5=Parker |first5=Eric T. |last6=Dworkin |first6=Jason P. |last7=Hill |first7=Dolores H. |last8=Connolly |first8=Harold C. |last9=Lauretta |first9=Dante S. |date=2021 |title=Extraterrestrial amino acids and L-enantiomeric excesses in the CM 2 carbonaceous chondrites Aguas Zarcas and Murchison |url=https://onlinelibrary.wiley.com/doi/10.1111/maps.13451 |journal=Meteoritics & Planetary Science |language=en |volume=56 |issue=1 |pages=148–173 |doi=10.1111/maps.13451 |bibcode=2021M&PS...56..148G |hdl=10150/638053 |s2cid=212671033 |issn=1086-9379|hdl-access=free }}</ref> The ungrouped C2 chondrite [[Tagish Lake (meteorite)|Tagish Lake]] has L-[[aspartic acid]] excesses up to ~60%, with carbon isotope measurements indicating an extraterrestrial origin due to significant enrichments in <sup>13</sup>C.<ref name=":1">{{Cite journal |last1=Glavin |first1=Daniel P. |last2=Elsila |first2=Jamie E. |last3=Burton |first3=Aaron S. |last4=Callahan |first4=Michael P. |last5=Dworkin |first5=Jason P. |last6=Hilts |first6=Robert W. |last7=Herd |first7=Christopher D. K. |date=2012 |title=Unusual nonterrestrial l-proteinogenic amino acid excesses in the Tagish Lake meteorite: l-amino acid excesses in the Tagish Lake meteorite |url=https://onlinelibrary.wiley.com/doi/10.1111/j.1945-5100.2012.01400.x |journal=Meteoritics & Planetary Science |language=en |volume=47 |issue=8 |pages=1347–1364 |doi=10.1111/j.1945-5100.2012.01400.x|s2cid=52227545 }}</ref> In Tagish Lake, proteinogenic amino acids show both significant L-excesses, and racemic mixtures: glutamic acid, serine, and threonine were found to have ~50 – 99% L-excesses, while alanine was racemic.<ref name=":1" />


It has been proposed that extraterrestrial amino acid L-excesses observed in carbonaceous chondrites are a result of differences in the crystallization behaviour of the enantiomers.<ref name=":2">{{Cite journal |last1=Glavin |first1=Daniel P. |last2=Burton |first2=Aaron S. |last3=Elsila |first3=Jamie E. |last4=Aponte |first4=José C. |last5=Dworkin |first5=Jason P. |date=2020-06-10 |title=The Search for Chiral Asymmetry as a Potential Biosignature in our Solar System |journal=Chemical Reviews |language=en |volume=120 |issue=11 |pages=4660–4689 |doi=10.1021/acs.chemrev.9b00474 |pmid=31743015 |s2cid=208185504 |issn=0009-2665|doi-access=free }}</ref> [[Circular polarization|Circularly polarized]] ultraviolet light has been shown to generate L-excesses in crystallizing amino acids for experimental conditions mimicking alteration on asteroids, and this is thought to be the dominant extraterrestrial source of chiral symmetry breaking (i.e., the favouring of one enantiomer over another).<ref>{{Cite journal |last1=Garcia |first1=Adrien D. |last2=Meinert |first2=Cornelia |last3=Sugahara |first3=Haruna |last4=Jones |first4=Nykola C. |last5=Hoffmann |first5=Søren V. |last6=Meierhenrich |first6=Uwe J. |date=2019-03-16 |title=The Astrophysical Formation of Asymmetric Molecules and the Emergence of a Chiral Bias |journal=Life |volume=9 |issue=1 |pages=29 |doi=10.3390/life9010029 |issn=2075-1729 |pmc=6463258 |pmid=30884807 |bibcode=2019Life....9...29G |doi-access=free }}</ref> It is notable that only excesses of the L-enantiomer have been observed in extraterrestrial amino acids, suggesting that the abiotic process responsible for enantiomeric enrichments may be the original source of the L-amino acid selectivity currently observed in terrestrial life.


==== Implications for extraterrestrial biosignatures ====

[[NASA]] have proposed a “Ladder of Life Detection” threshold of >20% enantiomeric excess in amino acids to distinguish extraterrestrial biosignatures. But, as previously mentioned, recent studies of carbonaceous chondrites and complementary experimental investigations have demonstrated that even larger enantiomeric excesses may be produced by abiotic pathways. To identify chiral asymmetry (enantiomeric excess) of biological origin, Glavin et al. (2020)<ref name=":2" /> emphasize three criteria that must be met: chiral asymmetry, light <sup>13</sup>C isotopic composition, and simplified distribution of [[Structural isomer|structural isomers]]. If a distribution of amino acids in an extraterrestrial sample is found to be chirally asymmetric, display structural isomeric preference, and carry <sup>13</sup>C, <sup>15</sup>N, and D depletions relative to associated inorganic material, a compelling case may be made for its biological origin. With the current interest in [[Sample-return mission|sample return missions]] from carbonaceous asteroids (e.g., [[OSIRIS-REx]]) and Mars headed by NASA and other space agencies , the subsequent analysis of returned samples devoid of terrestrial contamination will provide the best opportunity to discover potential biosignatures in our Solar System.



==See also==

==See also==

By publishing changes, you agree to the Terms of Use, and you irrevocably agree to release your contribution under the CC BY-SA 4.0 License and the GFDL. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel Editing help (opens in new window)

Copy and paste: – — ° ′ ″ ≈ ≠ ≤ ≥ ± − × ÷ ← → · §   Cite your sources: <ref></ref>


{{}}   {{{}}}   |   []   [[]]   [[Category:]]   #REDIRECT [[]]   &nbsp;   <s></s>   <sup></sup>   <sub></sub>   <code></code>   <pre></pre>   <blockquote></blockquote>   <ref></ref> <ref name="" />   {{Reflist}}   <references />   <includeonly></includeonly>   <noinclude></noinclude>   {{DEFAULTSORT:}}   <nowiki></nowiki>   <!-- -->   <span class="plainlinks"></span>


Symbols: ~ | ¡ ¿ † ‡ ↔ ↑ ↓ • ¶   # ∞   ‹› «»   ¤ ₳ ฿ ₵ ¢ ₡ ₢ $ ₫ ₯ € ₠ ₣ ƒ ₴ ₭ ₤ ℳ ₥ ₦ № ₧ ₰ £ ៛ ₨ ₪ ৳ ₮ ₩ ¥   ♠ ♣ ♥ ♦   𝄫 ♭ ♮ ♯ 𝄪   © ® ™
Latin: A a Á á À à  â Ä ä Ǎ ǎ Ă ă Ā ā à ã Å å Ą ą Æ æ Ǣ ǣ   B b   C c Ć ć Ċ ċ Ĉ ĉ Č č Ç ç   D d Ď ď Đ đ Ḍ ḍ Ð ð   E e É é È è Ė ė Ê ê Ë ë Ě ě Ĕ ĕ Ē ē Ẽ ẽ Ę ę Ẹ ẹ Ɛ ɛ Ǝ ǝ Ə ə   F f   G g Ġ ġ Ĝ ĝ Ğ ğ Ģ ģ   H h Ĥ ĥ Ħ ħ Ḥ ḥ   I i İ ı Í í Ì ì Î î Ï ï Ǐ ǐ Ĭ ĭ Ī ī Ĩ ĩ Į į Ị ị   J j Ĵ ĵ   K k Ķ ķ   L l Ĺ ĺ Ŀ ŀ Ľ ľ Ļ ļ Ł ł Ḷ ḷ Ḹ ḹ   M m Ṃ ṃ   N n Ń ń Ň ň Ñ ñ Ņ ņ Ṇ ṇ Ŋ ŋ   O o Ó ó Ò ò Ô ô Ö ö Ǒ ǒ Ŏ ŏ Ō ō Õ õ Ǫ ǫ Ọ ọ Ő ő Ø ø Œ œ   Ɔ ɔ   P p   Q q   R r Ŕ ŕ Ř ř Ŗ ŗ Ṛ ṛ Ṝ ṝ   S s Ś ś Ŝ ŝ Š š Ş ş Ș ș Ṣ ṣ ß   T t Ť ť Ţ ţ Ț ț Ṭ ṭ Þ þ   U u Ú ú Ù ù Û û Ü ü Ǔ ǔ Ŭ ŭ Ū ū Ũ ũ Ů ů Ų ų Ụ ụ Ű ű Ǘ ǘ Ǜ ǜ Ǚ ǚ Ǖ ǖ   V v   W w Ŵ ŵ   X x   Y y Ý ý Ŷ ŷ Ÿ ÿ Ỹ ỹ Ȳ ȳ   Z z Ź ź Ż ż Ž ž   ß Ð ð Þ þ Ŋ ŋ Ə ə
Greek: Ά ά Έ έ Ή ή Ί ί Ό ό Ύ ύ Ώ ώ   Α α Β β Γ γ Δ δ   Ε ε Ζ ζ Η η Θ θ   Ι ι Κ κ Λ λ Μ μ   Ν ν Ξ ξ Ο ο Π π   Ρ ρ Σ σ ς Τ τ Υ υ   Φ φ Χ χ Ψ ψ Ω ω   {{Polytonic|}}
Cyrillic: А а Б б В в Г г   Ґ ґ Ѓ ѓ Д д Ђ ђ   Е е Ё ё Є є Ж ж   З з Ѕ ѕ И и І і   Ї ї Й й Ј ј К к   Ќ ќ Л л Љ љ М м   Н н Њ њ О о П п   Р р С с Т т Ћ ћ   У у Ў ў Ф ф Х х   Ц ц Ч ч Џ џ Ш ш   Щ щ Ъ ъ Ы ы Ь ь   Э э Ю ю Я я   ́
IPA: t̪ d̪ ʈ ɖ ɟ ɡ ɢ ʡ ʔ   ɸ β θ ð ʃ ʒ ɕ ʑ ʂ ʐ ç ʝ ɣ χ ʁ ħ ʕ ʜ ʢ ɦ   ɱ ɳ ɲ ŋ ɴ   ʋ ɹ ɻ ɰ   ʙ ⱱ ʀ ɾ ɽ   ɫ ɬ ɮ ɺ ɭ ʎ ʟ   ɥ ʍ ɧ   ʼ   ɓ ɗ ʄ ɠ ʛ   ʘ ǀ ǃ ǂ ǁ   ɨ ʉ ɯ   ɪ ʏ ʊ   ø ɘ ɵ ɤ   ə ɚ   ɛ œ ɜ ɝ ɞ ʌ ɔ   æ   ɐ ɶ ɑ ɒ   ʰ ʱ ʷ ʲ ˠ ˤ ⁿ ˡ   ˈ ˌ ː ˑ ̪   {{IPA|}}

Wikidata entities used in this page

Pages transcluded onto the current version of this page (help):

This page is a member of 8 hidden categories (help):


Retrieved from "https://en.wikipedia.org/wiki/Carbonaceous_chondrite"







Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki