Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 

















Editing Carbonaceous chondrite

















Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Page information
Get shortened URL
Download QR code
Wikidata item
 
















Appearance
   

 










You are not logged in. Your IP address will be publicly visible if you make any edits. If you log inorcreate an account, your edits will be attributed to a username, among other benefits.

 Content that violates any copyrights will be deleted. Encyclopedic content must be verifiable through citations to reliable sources.


Latest revision Your text
Line 19: Line 19:

|Image2_alt_text =

|Image2_alt_text =

}}

}}

'''Carbonaceous chondrites''' or '''C chondrites''' are a class of [[chondrite|chondritic]] meteorites comprising at least 8 known groups and many ungrouped [[meteorite]]s. They include some of the most primitive known meteorites. The C chondrites represent only a small proportion (4.6%)<ref>{{cite journal |last1=Bischoff |first1=A. |last2=Geiger |first2=T. |title=Meteorites for the Sahara: Find locations, shock classification, degree of weathering and pairing |journal=Meteoritics |issn=0026-1114 |volume=30 |issue=1 |pages=113–122 |year=1995 |bibcode=1995Metic..30..113B |doi=10.1111/j.1945-5100.1995.tb01219.x|doi-access=free }}</ref> of [[meteorite fall]]s.

'''Carbonaceous chondrites''' or '''C chondrites''' are a class of [[chondrite|chondritic]] [[meteorite]]s comprising at least 8 known groups and many ungrouped meteorites. They include some of the most primitive known meteorites. The C chondrites represent only a small proportion (4.6%)<ref>{{cite journal |last1=Bischoff |first1=A. |last2=Geiger |first2=T. |title=Meteorites for the Sahara: Find locations, shock classification, degree of weathering and pairing |journal=Meteoritics |issn=0026-1114 |volume=30 |issue=1 |pages=113–122 |year=1995 |bibcode=1995Metic..30..113B |doi=10.1111/j.1945-5100.1995.tb01219.x|doi-access=free }}</ref> of [[meteorite fall]]s.



Some famous carbonaceous chondrites are: [[Allende meteorite|Allende]], [[Murchison meteorite|Murchison]], [[Orgueil (meteorite)|Orgueil]], [[Ivuna meteorite|Ivuna]], [[Murray meteorite|Murray]], [[Tagish Lake (meteorite)|Tagish Lake]], [[Sutter's Mill meteorite|Sutter's Mill]] and [[Winchcombe meteorite|Winchcombe]].

Some famous carbonaceous chondrites are: [[Allende meteorite|Allende]], [[Murchison meteorite|Murchison]], [[Orgueil (meteorite)|Orgueil]], [[Ivuna meteorite|Ivuna]], [[Murray meteorite|Murray]], [[Tagish Lake (meteorite)|Tagish Lake]], [[Sutter's Mill meteorite|Sutter's Mill]] and [[Winchcombe meteorite|Winchcombe]].



== General description ==

== General description ==

C chondrites contain a relatively high proportion of carbon (up to 3%), which is in the form of [[graphite]], [[carbonate]]s and organic compounds, including [[amino acid]]s. In addition, they contain water and minerals that have been modified by the influence of water.<ref>BÜHLER: . Springer-Verlag, 2013, {{ISBN|978-3-0348-6667-5}} , pp. 130 ( limited preview in Google Books search).</ref>

C chondrites contain a high proportion of carbon (up to 3%), which is in the form of [[graphite]], [[carbonate]]s and organic compounds, including [[amino acid]]s. In addition, they contain water and minerals that have been modified by the influence of water.<ref>BÜHLER: . Springer-Verlag, 2013, {{ISBN|978-3-0348-6667-5}} , pp. 130 ( limited preview in Google Books search).</ref>



The carbonaceous chondrites were not exposed to higher temperatures, so that they are hardly changed by thermal processes. Some carbonaceous chondrites, such as the [[Allende meteorite]], contain calcium-aluminum-rich inclusions (CAIs). These are compounds that emerged early from the primeval [[Formation and evolution of the Solar System|solar nebula]], condensed out and represent the oldest minerals formed in the [[Solar System]].<ref>Horst Rauchfuss:. Springer-Verlag, 2006, {{ISBN|978-3-540-27666-1}} , pp. 83 ( limited preview in Google Books search).</ref><ref>Gregor Markl: . Springer-Verlag, 2014, {{ISBN|978-3-662-44628-7}} , pp. 420 ( limited preview in Google Book Search).</ref>

The carbonaceous chondrites were not exposed to higher temperatures, so that they are hardly changed by thermal processes. Some carbonaceous chondrites, such as the [[Allende meteorite]], contain calcium-aluminum-rich inclusions (CAIs). These are compounds that emerged early from the primeval [[Formation and evolution of the Solar System|solar nebula]], condensed out and represent the oldest minerals formed in the [[Solar System]].<ref>Horst Rauchfuss:. Springer-Verlag, 2006, {{ISBN|978-3-540-27666-1}} , pp. 83 ( limited preview in Google Books search).</ref><ref>Gregor Markl: . Springer-Verlag, 2014, {{ISBN|978-3-662-44628-7}} , pp. 420 ( limited preview in Google Book Search).</ref>

Line 108: Line 108:


===CL group===

===CL group===

Officially recognized in 2022<ref>{{cite journal |last1=Gattacceca |first1=Jérôme |last2=McCubbin F. M. |last3=Grossman J. |last4=Bouvier A. |last5=Chabot N. L. |last6=D'Orazio M. |last7=Goodrich C. |last8=Greshake A. |last9=Gross J. |last10=Komatsu M. |last11=Miao B. |last12=Schrader D. |title=The Meteoritical Bulletin, No. 110 |journal=Meteoritics and Planetary Science |date=2022 |volume=57 |issue=11 |pages=21022105|doi=10.1111/maps.13918 |bibcode=2022M&PS...57.2102G |hdl=11568/1160522 |s2cid=253089085 |url=https://hal-insu.archives-ouvertes.fr/insu-03863070/file/Meteorit%20Planetary%20Scien%20-%202022%20-%20Gattacceca%20-%20The%20Meteoritical%20Bulletin%20No%20110.pdf }}</ref> after minimum specimens (five) described.<ref>{{cite journal |last1=Metzler |first1=K. |last2=Hezel, D. C. |last3=Barosch, J. |last4=Wölfer, E. |last5=Schneider, J. M. |last6=Hellmann, J. L. |last7=Berndt, J. |display-authors=etal |title=The Loongana (CL) Group of Carbonaceous Chondrites |journal=Geochimica et Cosmochimica Acta |date=2021 |volume=304 |pages=1–31|doi=10.1016/j.gca.2021.04.007 |bibcode=2021GeCoA.304....1M |s2cid=234847404 |url=http://oro.open.ac.uk/76111/1/1-s2.0-S0016703721002222-main.pdf }}</ref> CL chondrites, named after type specimen(s) Loongana, are chondrite-rich, metal-rich, and volatile-poor.

Officially recognized in 2022<ref>{{cite journal |last1=Gattacceca |first1=Jérôme |last2=McCubbin F. M. |last3=Grossman J. |last4=Bouvier A. |last5=Chabot N. L. |last6=D'Orazio M. |last7=Goodrich C. |last8=Greshake A. |last9=Gross J. |last10=Komatsu M. |last11=Miao B. |last12=Schrader D. |title=The Meteoritical Bulletin, No. 110 |journal=Meteoritics and Planetary Science |date=2022 |volume=57 |issue=11 |pages=21022105|doi=10.1111/maps.13918 |bibcode=2022M&PS...57.2102G |s2cid=253089085 |url=https://hal-insu.archives-ouvertes.fr/insu-03863070/file/Meteorit%20Planetary%20Scien%20-%202022%20-%20Gattacceca%20-%20The%20Meteoritical%20Bulletin%20No%20110.pdf }}</ref> after minimum specimens (five) described.<ref>{{cite journal |last1=Metzler |first1=K. |last2=Hezel, D. C. |last3=Barosch, J. |last4=Wölfer, E. |last5=Schneider, J. M. |last6=Hellmann, J. L. |last7=Berndt, J. |display-authors=etal |title=The Loongana (CL) Group of Carbonaceous Chondrites |journal=Geochimica et Cosmochimica Acta |date=2021 |volume=304 |pages=1–31|doi=10.1016/j.gca.2021.04.007 |bibcode=2021GeCoA.304....1M |s2cid=234847404 |url=http://oro.open.ac.uk/76111/1/1-s2.0-S0016703721002222-main.pdf }}</ref> CL chondrites, named after type specimen(s) Loongana, are chondrite-rich, metal-rich, and volatile-poor.



===C ungrouped===

===C ungrouped===

Line 129: Line 129:


==== Enantiomeric excesses observed in extraterrestrial amino acids ====

==== Enantiomeric excesses observed in extraterrestrial amino acids ====

More recently, amino acids from several carbonaceous chondrites have been identified with significant L-enantiomeric excesses. L-excesses from 3 – 15% in several non-protein α-dialkyl amino acids have been found in the Murchison and Murray meteorites.<ref>{{Cite journal |last1=Cronin |first1=John R. |last2=Pizzarello |first2=Sandra |date=1997-02-14 |title=Enantiomeric Excesses in Meteoritic Amino Acids |url=https://www.science.org/doi/10.1126/science.275.5302.951 |journal=Science |language=en |volume=275 |issue=5302 |pages=951–955 |doi=10.1126/science.275.5302.951 |pmid=9020072 |bibcode=1997Sci...275..951C |s2cid=10979716 |issn=0036-8075}}</ref> Their extraterrestrial origin is indicated by their absence in biological systems and significant heavy [[isotope]] enrichments in <sup>13</sup>C and deuterium compared to terrestrial values.<ref>{{Cite journal |last1=Elsila |first1=Jamie E. |last2=Callahan |first2=Michael P. |last3=Glavin |first3=Daniel P. |last4=Dworkin |first4=Jason P. |last5=Brückner |first5=Hans |date=2011 |title=Distribution and Stable Isotopic Composition of Amino Acids from Fungal Peptaibiotics: Assessing the Potential for Meteoritic Contamination |url=http://www.liebertpub.com/doi/10.1089/ast.2010.0505 |journal=Astrobiology |language=en |volume=11 |issue=2 |pages=123–133 |doi=10.1089/ast.2010.0505 |pmid=21417942 |bibcode=2011AsBio..11..123E |issn=1531-1074}}</ref> Further characterization of L-isovaline excesses up to 20.5% in a range of carbonaceous chondrite groups have supported a hypothesis that increasing [[hydrothermal alteration]] of the host meteorite correlates with increasing observed L-enantiomeric excess.<ref>{{Cite journal |last1=Glavin |first1=Daniel P. |last2=Callahan |first2=Michael P. |last3=Dworkin |first3=Jason P. |last4=Elsila |first4=Jamie E. |date=2010 |title=The effects of parent body processes on amino acids in carbonaceous chondrites: Amino acids in carbonaceous chondrites |url=https://onlinelibrary.wiley.com/doi/10.1111/j.1945-5100.2010.01132.x |journal=Meteoritics & Planetary Science |language=en |volume=45 |issue=12 |pages=1948–1972 |doi=10.1111/j.1945-5100.2010.01132.x|hdl=2060/20100032396 |s2cid=62883414 |hdl-access=free }}</ref> Large L-excesses for α-H amino acids have also been reported, but these are more problematic due to the potential for terrestrial contamination.<ref>{{Cite journal |last1=Glavin |first1=Daniel P. |last2=Elsila |first2=Jamie E. |last3=McLain |first3=Hannah L. |last4=Aponte |first4=José C. |last5=Parker |first5=Eric T. |last6=Dworkin |first6=Jason P. |last7=Hill |first7=Dolores H. |last8=Connolly |first8=Harold C. |last9=Lauretta |first9=Dante S. |date=2021 |title=Extraterrestrial amino acids and L-enantiomeric excesses in the CM 2 carbonaceous chondrites Aguas Zarcas and Murchison |url=https://onlinelibrary.wiley.com/doi/10.1111/maps.13451 |journal=Meteoritics & Planetary Science |language=en |volume=56 |issue=1 |pages=148–173 |doi=10.1111/maps.13451 |bibcode=2021M&PS...56..148G |hdl=10150/638053 |s2cid=212671033 |issn=1086-9379|hdl-access=free }}</ref> The ungrouped C2 chondrite [[Tagish Lake (meteorite)|Tagish Lake]] has L-[[aspartic acid]] excesses up to ~60%, with carbon isotope measurements indicating an extraterrestrial origin due to significant enrichments in <sup>13</sup>C.<ref name=":1">{{Cite journal |last1=Glavin |first1=Daniel P. |last2=Elsila |first2=Jamie E. |last3=Burton |first3=Aaron S. |last4=Callahan |first4=Michael P. |last5=Dworkin |first5=Jason P. |last6=Hilts |first6=Robert W. |last7=Herd |first7=Christopher D. K. |date=2012 |title=Unusual nonterrestrial l-proteinogenic amino acid excesses in the Tagish Lake meteorite: l-amino acid excesses in the Tagish Lake meteorite |url=https://onlinelibrary.wiley.com/doi/10.1111/j.1945-5100.2012.01400.x |journal=Meteoritics & Planetary Science |language=en |volume=47 |issue=8 |pages=1347–1364 |doi=10.1111/j.1945-5100.2012.01400.x|s2cid=52227545 }}</ref> In Tagish Lake, proteinogenic amino acids show both significant L-excesses, and racemic mixtures: glutamic acid, serine, and threonine were found to have ~50 – 99% L-excesses, while alanine was racemic.<ref name=":1" />

More recently, amino acids from several carbonaceous chondrites have been identified with significant L-enantiomeric excesses. L-excesses from 3 – 15% in several non-protein α-dialkyl amino acids have been found in the Murchison and Murray meteorites.<ref>{{Cite journal |last1=Cronin |first1=John R. |last2=Pizzarello |first2=Sandra |date=1997-02-14 |title=Enantiomeric Excesses in Meteoritic Amino Acids |url=https://www.science.org/doi/10.1126/science.275.5302.951 |journal=Science |language=en |volume=275 |issue=5302 |pages=951–955 |doi=10.1126/science.275.5302.951 |pmid=9020072 |bibcode=1997Sci...275..951C |s2cid=10979716 |issn=0036-8075}}</ref> Their extraterrestrial origin is indicated by their absence in biological systems and significant heavy [[isotope]] enrichments in <sup>13</sup>C and deuterium compared to terrestrial values.<ref>{{Cite journal |last1=Elsila |first1=Jamie E. |last2=Callahan |first2=Michael P. |last3=Glavin |first3=Daniel P. |last4=Dworkin |first4=Jason P. |last5=Brückner |first5=Hans |date=2011 |title=Distribution and Stable Isotopic Composition of Amino Acids from Fungal Peptaibiotics: Assessing the Potential for Meteoritic Contamination |url=http://www.liebertpub.com/doi/10.1089/ast.2010.0505 |journal=Astrobiology |language=en |volume=11 |issue=2 |pages=123–133 |doi=10.1089/ast.2010.0505 |pmid=21417942 |bibcode=2011AsBio..11..123E |issn=1531-1074}}</ref> Further characterization of L-isovaline excesses up to 20.5% in a range of carbonaceous chondrite groups have supported a hypothesis that increasing [[hydrothermal alteration]] of the host meteorite correlates with increasing observed L-enantiomeric excess.<ref>{{Cite journal |last1=Glavin |first1=Daniel P. |last2=Callahan |first2=Michael P. |last3=Dworkin |first3=Jason P. |last4=Elsila |first4=Jamie E. |date=2010 |title=The effects of parent body processes on amino acids in carbonaceous chondrites: Amino acids in carbonaceous chondrites |url=https://onlinelibrary.wiley.com/doi/10.1111/j.1945-5100.2010.01132.x |journal=Meteoritics & Planetary Science |language=en |volume=45 |issue=12 |pages=1948–1972 |doi=10.1111/j.1945-5100.2010.01132.x|hdl=2060/20100032396 |s2cid=62883414 |hdl-access=free }}</ref> Large L-excesses for α-H amino acids have also been reported, but these are more problematic due to the potential for terrestrial contamination.<ref>{{Cite journal |last1=Glavin |first1=Daniel P. |last2=Elsila |first2=Jamie E. |last3=McLain |first3=Hannah L. |last4=Aponte |first4=José C. |last5=Parker |first5=Eric T. |last6=Dworkin |first6=Jason P. |last7=Hill |first7=Dolores H. |last8=Connolly |first8=Harold C. |last9=Lauretta |first9=Dante S. |date=2021 |title=Extraterrestrial amino acids and L‐enantiomeric excesses in the CM 2 carbonaceous chondrites Aguas Zarcas and Murchison |url=https://onlinelibrary.wiley.com/doi/10.1111/maps.13451 |journal=Meteoritics & Planetary Science |language=en |volume=56 |issue=1 |pages=148–173 |doi=10.1111/maps.13451 |bibcode=2021M&PS...56..148G |hdl=10150/638053 |s2cid=212671033 |issn=1086-9379|hdl-access=free }}</ref> The ungrouped C2 chondrite [[Tagish Lake (meteorite)|Tagish Lake]] has L-[[aspartic acid]] excesses up to ~60%, with carbon isotope measurements indicating an extraterrestrial origin due to significant enrichments in <sup>13</sup>C.<ref name=":1">{{Cite journal |last1=Glavin |first1=Daniel P. |last2=Elsila |first2=Jamie E. |last3=Burton |first3=Aaron S. |last4=Callahan |first4=Michael P. |last5=Dworkin |first5=Jason P. |last6=Hilts |first6=Robert W. |last7=Herd |first7=Christopher D. K. |date=2012 |title=Unusual nonterrestrial l-proteinogenic amino acid excesses in the Tagish Lake meteorite: l-amino acid excesses in the Tagish Lake meteorite |url=https://onlinelibrary.wiley.com/doi/10.1111/j.1945-5100.2012.01400.x |journal=Meteoritics & Planetary Science |language=en |volume=47 |issue=8 |pages=1347–1364 |doi=10.1111/j.1945-5100.2012.01400.x|s2cid=52227545 }}</ref> In Tagish Lake, proteinogenic amino acids show both significant L-excesses, and racemic mixtures: glutamic acid, serine, and threonine were found to have ~50 – 99% L-excesses, while alanine was racemic.<ref name=":1" />



It has been proposed that extraterrestrial amino acid L-excesses observed in carbonaceous chondrites are a result of differences in the crystallization behaviour of the enantiomers.<ref name=":2">{{Cite journal |last1=Glavin |first1=Daniel P. |last2=Burton |first2=Aaron S. |last3=Elsila |first3=Jamie E. |last4=Aponte |first4=José C. |last5=Dworkin |first5=Jason P. |date=2020-06-10 |title=The Search for Chiral Asymmetry as a Potential Biosignature in our Solar System |journal=Chemical Reviews |language=en |volume=120 |issue=11 |pages=4660–4689 |doi=10.1021/acs.chemrev.9b00474 |pmid=31743015 |s2cid=208185504 |issn=0009-2665|doi-access=free }}</ref> [[Circular polarization|Circularly polarized]] ultraviolet light has been shown to generate L-excesses in crystallizing amino acids for experimental conditions mimicking alteration on asteroids, and this is thought to be the dominant extraterrestrial source of chiral symmetry breaking (i.e., the favouring of one enantiomer over another).<ref>{{Cite journal |last1=Garcia |first1=Adrien D. |last2=Meinert |first2=Cornelia |last3=Sugahara |first3=Haruna |last4=Jones |first4=Nykola C. |last5=Hoffmann |first5=Søren V. |last6=Meierhenrich |first6=Uwe J. |date=2019-03-16 |title=The Astrophysical Formation of Asymmetric Molecules and the Emergence of a Chiral Bias |journal=Life |volume=9 |issue=1 |pages=29 |doi=10.3390/life9010029 |issn=2075-1729 |pmc=6463258 |pmid=30884807 |bibcode=2019Life....9...29G |doi-access=free }}</ref> It is notable that only excesses of the L-enantiomer have been observed in extraterrestrial amino acids, suggesting that the abiotic process responsible for enantiomeric enrichments may be the original source of the L-amino acid selectivity currently observed in terrestrial life.

It has been proposed that extraterrestrial amino acid L-excesses observed in carbonaceous chondrites are a result of differences in the crystallization behaviour of the enantiomers.<ref name=":2">{{Cite journal |last1=Glavin |first1=Daniel P. |last2=Burton |first2=Aaron S. |last3=Elsila |first3=Jamie E. |last4=Aponte |first4=José C. |last5=Dworkin |first5=Jason P. |date=2020-06-10 |title=The Search for Chiral Asymmetry as a Potential Biosignature in our Solar System |url=https://pubs.acs.org/doi/10.1021/acs.chemrev.9b00474 |journal=Chemical Reviews |language=en |volume=120 |issue=11 |pages=4660–4689 |doi=10.1021/acs.chemrev.9b00474 |pmid=31743015 |s2cid=208185504 |issn=0009-2665|doi-access=free }}</ref> [[Circular polarization|Circularly polarized]] ultraviolet light has been shown to generate L-excesses in crystallizing amino acids for experimental conditions mimicking alteration on asteroids, and this is thought to be the dominant extraterrestrial source of chiral symmetry breaking (i.e., the favouring of one enantiomer over another).<ref>{{Cite journal |last1=Garcia |first1=Adrien D. |last2=Meinert |first2=Cornelia |last3=Sugahara |first3=Haruna |last4=Jones |first4=Nykola C. |last5=Hoffmann |first5=Søren V. |last6=Meierhenrich |first6=Uwe J. |date=2019-03-16 |title=The Astrophysical Formation of Asymmetric Molecules and the Emergence of a Chiral Bias |journal=Life |volume=9 |issue=1 |pages=29 |doi=10.3390/life9010029 |issn=2075-1729 |pmc=6463258 |pmid=30884807 |bibcode=2019Life....9...29G |doi-access=free }}</ref> It is notable that only excesses of the L-enantiomer have been observed in extraterrestrial amino acids, suggesting that the abiotic process responsible for enantiomeric enrichments may be the original source of the L-amino acid selectivity currently observed in terrestrial life.



==== Implications for extraterrestrial biosignatures ====

==== Implications for extraterrestrial biosignatures ====

By publishing changes, you agree to the Terms of Use, and you irrevocably agree to release your contribution under the CC BY-SA 4.0 License and the GFDL. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel Editing help (opens in new window)

Copy and paste: – — ° ′ ″ ≈ ≠ ≤ ≥ ± − × ÷ ← → · §   Cite your sources: <ref></ref>


{{}}   {{{}}}   |   []   [[]]   [[Category:]]   #REDIRECT [[]]   &nbsp;   <s></s>   <sup></sup>   <sub></sub>   <code></code>   <pre></pre>   <blockquote></blockquote>   <ref></ref> <ref name="" />   {{Reflist}}   <references />   <includeonly></includeonly>   <noinclude></noinclude>   {{DEFAULTSORT:}}   <nowiki></nowiki>   <!-- -->   <span class="plainlinks"></span>


Symbols: ~ | ¡ ¿ † ‡ ↔ ↑ ↓ • ¶   # ∞   ‹› «»   ¤ ₳ ฿ ₵ ¢ ₡ ₢ $ ₫ ₯ € ₠ ₣ ƒ ₴ ₭ ₤ ℳ ₥ ₦ № ₧ ₰ £ ៛ ₨ ₪ ৳ ₮ ₩ ¥   ♠ ♣ ♥ ♦   𝄫 ♭ ♮ ♯ 𝄪   © ® ™
Latin: A a Á á À à  â Ä ä Ǎ ǎ Ă ă Ā ā à ã Å å Ą ą Æ æ Ǣ ǣ   B b   C c Ć ć Ċ ċ Ĉ ĉ Č č Ç ç   D d Ď ď Đ đ Ḍ ḍ Ð ð   E e É é È è Ė ė Ê ê Ë ë Ě ě Ĕ ĕ Ē ē Ẽ ẽ Ę ę Ẹ ẹ Ɛ ɛ Ǝ ǝ Ə ə   F f   G g Ġ ġ Ĝ ĝ Ğ ğ Ģ ģ   H h Ĥ ĥ Ħ ħ Ḥ ḥ   I i İ ı Í í Ì ì Î î Ï ï Ǐ ǐ Ĭ ĭ Ī ī Ĩ ĩ Į į Ị ị   J j Ĵ ĵ   K k Ķ ķ   L l Ĺ ĺ Ŀ ŀ Ľ ľ Ļ ļ Ł ł Ḷ ḷ Ḹ ḹ   M m Ṃ ṃ   N n Ń ń Ň ň Ñ ñ Ņ ņ Ṇ ṇ Ŋ ŋ   O o Ó ó Ò ò Ô ô Ö ö Ǒ ǒ Ŏ ŏ Ō ō Õ õ Ǫ ǫ Ọ ọ Ő ő Ø ø Œ œ   Ɔ ɔ   P p   Q q   R r Ŕ ŕ Ř ř Ŗ ŗ Ṛ ṛ Ṝ ṝ   S s Ś ś Ŝ ŝ Š š Ş ş Ș ș Ṣ ṣ ß   T t Ť ť Ţ ţ Ț ț Ṭ ṭ Þ þ   U u Ú ú Ù ù Û û Ü ü Ǔ ǔ Ŭ ŭ Ū ū Ũ ũ Ů ů Ų ų Ụ ụ Ű ű Ǘ ǘ Ǜ ǜ Ǚ ǚ Ǖ ǖ   V v   W w Ŵ ŵ   X x   Y y Ý ý Ŷ ŷ Ÿ ÿ Ỹ ỹ Ȳ ȳ   Z z Ź ź Ż ż Ž ž   ß Ð ð Þ þ Ŋ ŋ Ə ə
Greek: Ά ά Έ έ Ή ή Ί ί Ό ό Ύ ύ Ώ ώ   Α α Β β Γ γ Δ δ   Ε ε Ζ ζ Η η Θ θ   Ι ι Κ κ Λ λ Μ μ   Ν ν Ξ ξ Ο ο Π π   Ρ ρ Σ σ ς Τ τ Υ υ   Φ φ Χ χ Ψ ψ Ω ω   {{Polytonic|}}
Cyrillic: А а Б б В в Г г   Ґ ґ Ѓ ѓ Д д Ђ ђ   Е е Ё ё Є є Ж ж   З з Ѕ ѕ И и І і   Ї ї Й й Ј ј К к   Ќ ќ Л л Љ љ М м   Н н Њ њ О о П п   Р р С с Т т Ћ ћ   У у Ў ў Ф ф Х х   Ц ц Ч ч Џ џ Ш ш   Щ щ Ъ ъ Ы ы Ь ь   Э э Ю ю Я я   ́
IPA: t̪ d̪ ʈ ɖ ɟ ɡ ɢ ʡ ʔ   ɸ β θ ð ʃ ʒ ɕ ʑ ʂ ʐ ç ʝ ɣ χ ʁ ħ ʕ ʜ ʢ ɦ   ɱ ɳ ɲ ŋ ɴ   ʋ ɹ ɻ ɰ   ʙ ⱱ ʀ ɾ ɽ   ɫ ɬ ɮ ɺ ɭ ʎ ʟ   ɥ ʍ ɧ   ʼ   ɓ ɗ ʄ ɠ ʛ   ʘ ǀ ǃ ǂ ǁ   ɨ ʉ ɯ   ɪ ʏ ʊ   ø ɘ ɵ ɤ   ə ɚ   ɛ œ ɜ ɝ ɞ ʌ ɔ   æ   ɐ ɶ ɑ ɒ   ʰ ʱ ʷ ʲ ˠ ˤ ⁿ ˡ   ˈ ˌ ː ˑ ̪   {{IPA|}}

Wikidata entities used in this page

Pages transcluded onto the current version of this page (help):

This page is a member of 8 hidden categories (help):


Retrieved from "https://en.wikipedia.org/wiki/Carbonaceous_chondrite"







Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki