Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 

















Editing Extended periodic table

















Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Page information
Get shortened URL
Download QR code
Wikidata item
 
















Appearance
   

 










You are not logged in. Your IP address will be publicly visible if you make any edits. If you log inorcreate an account, your edits will be attributed to a username, among other benefits.

 Content that violates any copyrights will be deleted. Encyclopedic content must be verifiable through citations to reliable sources.


Latest revision Your text
Line 558: Line 558:

This was also tried unsuccessfully the next year during the aforementioned attempt to make element 119 in the <sup>249</sup>Bk+<sup>50</sup>Ti reaction, as <sup>249</sup>Bk decays to <sup>249</sup>Cf. Because of its asymmetry,<ref>{{cite journal |last1=Siwek-Wilczyńska |first1=K. |last2=Cap |first2=T. |last3=Wilczyński |first3=J. |date=April 2010 |title=How can one synthesize the element ''Z'' = 120? |journal=International Journal of Modern Physics E |volume=19 |issue=4 |pages=500 |doi=10.1142/S021830131001490X|bibcode=2010IJMPE..19..500S }}</ref> the reaction between <sup>249</sup>Cf and <sup>50</sup>Ti was predicted to be the most favorable practical reaction for synthesizing unbinilium, although it is also somewhat cold. No unbinilium atoms were identified, implying a limiting cross-section of 200&nbsp;fb.<ref name=Yakushev>{{cite web |url=http://asrc.jaea.go.jp/soshiki/gr/chiba_gr/workshop3/&Yakushev.pdf |title=Superheavy Element Research at TASCA |last1=Yakushev |first1=A. |date=2012 |website=asrc.jaea.go.jp |access-date=23 September 2016}}</ref> Jens Volker Kratz predicted the actual maximum cross-section for producing element 120 by any of these reactions to be around 0.1&nbsp;fb;<ref name=Kratz/> in comparison, the world record for the smallest cross section of a successful reaction was 30&nbsp;fb for the reaction <sup>209</sup>Bi(<sup>70</sup>Zn,n)<sup>278</sup>[[nihonium|Nh]],<ref name=Zagrebaev/> and Kratz predicted a maximum cross-section of 20&nbsp;fb for producing the neighbouring element 119.<ref name=Kratz/> If these predictions are accurate, then synthesizing element 119 would be at the limits of current technology, and synthesizing element 120 would require new methods.<ref name=Kratz/>

This was also tried unsuccessfully the next year during the aforementioned attempt to make element 119 in the <sup>249</sup>Bk+<sup>50</sup>Ti reaction, as <sup>249</sup>Bk decays to <sup>249</sup>Cf. Because of its asymmetry,<ref>{{cite journal |last1=Siwek-Wilczyńska |first1=K. |last2=Cap |first2=T. |last3=Wilczyński |first3=J. |date=April 2010 |title=How can one synthesize the element ''Z'' = 120? |journal=International Journal of Modern Physics E |volume=19 |issue=4 |pages=500 |doi=10.1142/S021830131001490X|bibcode=2010IJMPE..19..500S }}</ref> the reaction between <sup>249</sup>Cf and <sup>50</sup>Ti was predicted to be the most favorable practical reaction for synthesizing unbinilium, although it is also somewhat cold. No unbinilium atoms were identified, implying a limiting cross-section of 200&nbsp;fb.<ref name=Yakushev>{{cite web |url=http://asrc.jaea.go.jp/soshiki/gr/chiba_gr/workshop3/&Yakushev.pdf |title=Superheavy Element Research at TASCA |last1=Yakushev |first1=A. |date=2012 |website=asrc.jaea.go.jp |access-date=23 September 2016}}</ref> Jens Volker Kratz predicted the actual maximum cross-section for producing element 120 by any of these reactions to be around 0.1&nbsp;fb;<ref name=Kratz/> in comparison, the world record for the smallest cross section of a successful reaction was 30&nbsp;fb for the reaction <sup>209</sup>Bi(<sup>70</sup>Zn,n)<sup>278</sup>[[nihonium|Nh]],<ref name=Zagrebaev/> and Kratz predicted a maximum cross-section of 20&nbsp;fb for producing the neighbouring element 119.<ref name=Kratz/> If these predictions are accurate, then synthesizing element 119 would be at the limits of current technology, and synthesizing element 120 would require new methods.<ref name=Kratz/>



In May 2021, the JINR announced plans to investigate the <sup>249</sup>Cf+<sup>50</sup>Ti reaction in their new facility. However, the <sup>249</sup>Cf target would have had to be made by the [[Oak Ridge National Laboratory]] in the United States,<ref>{{cite web |url=http://www.jinr.ru/posts/how-are-new-chemical-elements-born/ |title=How are new chemical elements born? |last1=Sokolova |first1=Svetlana |last2=Popeko |first2=Andrei |date=24 May 2021 |website=jinr.ru |publisher=JINR |access-date=4 November 2021 |quote=Previously, we worked mainly with calcium. This is element 20 in the Periodic Table. It was used to bombard the target. And the heaviest element that can be used to make a target is californium, 98. Accordingly, 98 + 20 is 118. That is, to get element 120, we need to proceed to the next particle. This is most likely titanium: 22 + 98 = 120.<br/><br/>There is still much work to adjust the system. I don’t want to get ahead of myself, but if we can successfully conduct all the model experiments, then the first experiments on the synthesis of element 120 will probably start this year.}}</ref> and after the [[Russian invasion of Ukraine]] began in February 2022, collaboration between the JINR and other institutes completely ceased due to sanctions.<ref name=ft>{{cite news |last=Ahuja |first=Anjana |date=18 October 2023 |title=Even the periodic table must bow to the reality of war |url=https://www.ft.com/content/6b6b0afc-39b2-4955-af5a-d0ea6b4d8306 |work=Financial Times |location= |access-date=20 October 2023}}</ref> Consequently, the JINR now plans to try the <sup>248</sup>Cm+<sup>54</sup>Cr reaction instead. A preparatory experiment for the use of <sup>54</sup>Cr projectiles was conducted in late 2023, successfully synthesising <sup>288</sup>Lv in the <sup>238</sup>U+<sup>54</sup>Cr reaction,<ref name=Lv288>{{cite news |url=http://www.jinr.ru/posts/v-lyar-oiyai-vpervye-v-mire-sintezirovan-livermorij-288/ |title=В ЛЯР ОИЯИ впервые в мире синтезирован ливерморий-288 |trans-title=Livermorium-288 was synthesized for the first time in the world at FLNR JINR |language=ru |date=23 October 2023 |publisher=Joint Institute for Nuclear Research |access-date=18 November 2023}}</ref> and the hope is for experiments to synthesise element 120 to begin by 2025.<ref>{{cite news |last=Mayer |first=Anastasiya |date=31 May 2023 |language=ru |title="Большинство наших партнеров гораздо мудрее политиков" |trans-title=Most of our partners are much wiser than politicians |url=https://www.vedomosti.ru/technology/characters/2023/05/31/977789-bolshinstvo-nashih-partnerov-mudree-politikov |work=[[Vedomosti]] |location= |access-date=15 August 2023 |quote=В этом году мы фактически завершаем подготовительную серию экспериментов по отладке всех режимов ускорителя и масс-спектрометров для синтеза 120-го элемента. Научились получать высокие интенсивности ускоренного хрома и титана. Научились детектировать сверхтяжелые одиночные атомы в реакциях с минимальным сечением. Теперь ждем, когда закончится наработка материала для мишени на реакторах и сепараторах у наших партнеров в «Росатоме» и в США: кюрий, берклий, калифорний. Надеюсь, что в 2025 г. мы полноценно приступим к синтезу 120-го элемента.}}</ref>

In May 2021, the JINR announced plans to investigate the <sup>249</sup>Cf+<sup>50</sup>Ti reaction in their new facility. However, the <sup>249</sup>Cf target would have had to be made by the [[Oak Ridge National Laboratory]] in the United States,<ref>{{cite web |url=http://www.jinr.ru/posts/how-are-new-chemical-elements-born/ |title=How are new chemical elements born? |last1=Sokolova |first1=Svetlana |last2=Popeko |first2=Andrei |date=24 May 2021 |website=jinr.ru |publisher=JINR |access-date=4 November 2021 |quote=Previously, we worked mainly with calcium. This is element 20 in the Periodic Table. It was used to bombard the target. And the heaviest element that can be used to make a target is californium, 98. Accordingly, 98 + 20 is 118. That is, to get element 120, we need to proceed to the next particle. This is most likely titanium: 22 + 98 = 120.<br/><br/>There is still much work to adjust the system. I don’t want to get ahead of myself, but if we can successfully conduct all the model experiments, then the first experiments on the synthesis of element 120 will probably start this year.}}</ref> and after the [[Russian invasion of Ukraine]] began in February 2022, collaboration between the JINR and other institutes completely ceased due to sanctions.<ref name=ft>{{cite news |last=Ahuja |first=Anjana |date=18 October 2023 |title=Even the periodic table must bow to the reality of war |url=https://www.ft.com/content/6b6b0afc-39b2-4955-af5a-d0ea6b4d8306 |work=Financial Times |location= |access-date=20 October 2023}}</ref> Consequently, the JINR now plans to try the <sup>248</sup>Cm+<sup>54</sup>Cr reaction instead. A preparatory experiment for the use of <sup>54</sup>Cr projectiles was conducted in late 2023, successfully synthesising <sup>288</sup>Lv in the <sup>238</sup>U+<sup>54</sup>Cr reaction,<ref name=Lv288>{{cite news |url=http://www.jinr.ru/posts/v-lyar-oiyai-vpervye-v-mire-sintezirovan-livermorij-288/ |title=В ЛЯР ОИЯИ впервые в мире синтезирован ливерморий-288 |trans-title=Livermorium-288 was synthesized for the first time in the world at FLNR JINR |language=ru |date=23 October 2023 |publisher=Joint Institute for Nuclear Research |access-date=18 November 2023}}</ref> and the hope is for experiments to synthesise element 120 to begin by 2025.<ref>{{cite news |last=Mayer |first=Anastasiya |date=31 May 2023 |language=ru |title="Большинство наших партнеров гораздо мудрее политиков" |trans-title="Most of our partners are much wiser than politicians" |url=https://www.vedomosti.ru/technology/characters/2023/05/31/977789-bolshinstvo-nashih-partnerov-mudree-politikov |work=[[Vedomosti]] |location= |access-date=15 August 2023 |quote=В этом году мы фактически завершаем подготовительную серию экспериментов по отладке всех режимов ускорителя и масс-спектрометров для синтеза 120-го элемента. Научились получать высокие интенсивности ускоренного хрома и титана. Научились детектировать сверхтяжелые одиночные атомы в реакциях с минимальным сечением. Теперь ждем, когда закончится наработка материала для мишени на реакторах и сепараторах у наших партнеров в «Росатоме» и в США: кюрий, берклий, калифорний. Надеюсь, что в 2025 г. мы полноценно приступим к синтезу 120-го элемента.}}</ref>



Starting from 2022,<ref name=usprogram/> plans have also been made to use 88-inch cyclotron in the [[Lawrence Berkeley National Laboratory]] (LBNL) in [[Berkeley, California|Berkeley]], [[California]], United States to attempt to make new elements using <sup>50</sup>Ti projectiles. The plan is to first test them on a plutonium target to create [[livermorium]] (element 116) in late 2023. If that is successful, an attempt to make element 120 in the <sup>249</sup>Cf+<sup>50</sup>Ti reaction will begin, probably in 2024 at the earliest.<ref>{{cite news |last=Chapman |first=Kit |date=10 October 2023 |title=Berkeley Lab to lead US hunt for element 120 after breakdown of collaboration with Russia |url=https://www.chemistryworld.com/news/berkeley-lab-to-lead-us-hunt-for-element-120-after-breakdown-of-collaboration-with-russia/4018207.article |work=Chemistry World |location= |access-date=20 October 2023}}</ref><ref>{{cite web |url=https://physicalsciences.lbl.gov/2023/10/16/berkeley-lab-to-test-new-approach-to-making-superheavy-elements/ |title=Berkeley Lab to Test New Approach to Making Superheavy Elements |last=Biron |first=Lauren |date=16 October 2023 |website=lbl.gov |publisher=[[Lawrence Berkeley National Laboratory]] |access-date=20 October 2023 |quote=}}</ref>

Starting from 2022,<ref name=usprogram/> plans have also been made to use 88-inch cyclotron in the [[Lawrence Berkeley National Laboratory]] (LBNL) in [[Berkeley, California|Berkeley]], [[California]], United States to attempt to make new elements using <sup>50</sup>Ti projectiles. The plan is to first test them on a plutonium target to create [[livermorium]] (element 116) in late 2023. If that is successful, an attempt to make element 120 in the <sup>249</sup>Cf+<sup>50</sup>Ti reaction will begin, probably in 2024 at the earliest.<ref>{{cite news |last=Chapman |first=Kit |date=10 October 2023 |title=Berkeley Lab to lead US hunt for element 120 after breakdown of collaboration with Russia |url=https://www.chemistryworld.com/news/berkeley-lab-to-lead-us-hunt-for-element-120-after-breakdown-of-collaboration-with-russia/4018207.article |work=Chemistry World |location= |access-date=20 October 2023}}</ref><ref>{{cite web |url=https://physicalsciences.lbl.gov/2023/10/16/berkeley-lab-to-test-new-approach-to-making-superheavy-elements/ |title=Berkeley Lab to Test New Approach to Making Superheavy Elements |last=Biron |first=Lauren |date=16 October 2023 |website=lbl.gov |publisher=[[Lawrence Berkeley National Laboratory]] |access-date=20 October 2023 |quote=}}</ref>

Line 1,032: Line 1,032:

:<math>E=\frac{m c^2}{\sqrt{1+\dfrac{Z^2 \alpha^2}{\bigg({n-\left(j+\frac12\right)+\sqrt{\left(j+\frac12\right)^2-Z^ 2\alpha^2}\bigg)}^2}}},</math>

:<math>E=\frac{m c^2}{\sqrt{1+\dfrac{Z^2 \alpha^2}{\bigg({n-\left(j+\frac12\right)+\sqrt{\left(j+\frac12\right)^2-Z^ 2\alpha^2}\bigg)}^2}}},</math>



where ''m'' is the rest mass of the electron.<ref>{{cite web |title=Solution of the Dirac Equation for Hydrogen |url=https://quantummechanics.ucsd.edu/ph130a/130_notes/node501.html}}</ref> For ''Z''&nbsp;>&nbsp;137, the wave function of the Dirac ground state is oscillatory, rather than bound, and there is no gap between the positive and negative energy spectra, as in the [[Klein paradox]].<ref>{{cite book|first1=J. D.|last1= Bjorken|first2=S. D.|last2= Drell|year=1964|title=Relativistic Quantum Mechanics|url=https://archive.org/details/relativisticquan0000bjor|url-access=registration|publisher=[[McGraw-Hill]]}}</ref> More accurate calculations taking into account the effects of the finite size of the nucleus indicate that the binding energy first exceeds 2''mc''<sup>2</sup> for ''Z''&nbsp;>&nbsp;''Z''<sub>cr</sub> probably between 168 and 172.<ref name=gamowstates/> For ''Z''&nbsp;>&nbsp;''Z''<sub>cr</sub>, if the innermost orbital (1s) is not filled, the electric field of the nucleus will [[pair production|pull an electron out of the vacuum]], resulting in the spontaneous emission of a [[positron]].<ref>{{cite journal|first1=W. |last1=Greiner|first2= S. |last2=Schramm |year=2008|title=Resource Letter QEDV-1: The QED vacuum |journal=[[American Journal of Physics]] |volume=76 |issue=6|pages=509 |doi=10.1119/1.2820395|bibcode=2008AmJPh..76..509G}}, and references therein</ref><ref>{{cite journal|last1=Wang|first1=Yang|last2=Wong|first2=Dillon|last3=Shytov|first3=Andrey V.|last4=Brar|first4=Victor W.|last5=Choi|first5=Sangkook|last6=Wu|first6=Qiong|last7=Tsai|first7=Hsin-Zon|last8=Regan|first8=William|last9=Zettl|first9=Alex|author9-link=Alex Zettl|last10=Kawakami|first10=Roland K.|last11=Louie|first11=Steven G.|last12=Levitov|first12=Leonid S.|last13=Crommie|first13=Michael F.|title=Observing Atomic Collapse Resonances in Artificial Nuclei on Graphene|journal=Science|date=May 10, 2013|volume=340|issue=6133|pages=734–737|doi=10.1126/science.1234320|arxiv = 1510.02890 |bibcode = 2013Sci...340..734W|pmid=23470728|s2cid=29384402}}</ref> This diving of the 1s subshell into the negative continuum has often been taken to constitute an "end" to the periodic table,<ref name=PT172/><ref name="rsc"/><ref>{{Cite journal|last1=Indelicato|first1=Paul|last2=Bieroń|first2=Jacek|last3=Jönsson|first3=Per|date=2011-06-01|title=Are MCDF calculations 101% correct in the super-heavy elements range?|url=https://dspace.mah.se/handle/2043/12984|journal=Theoretical Chemistry Accounts|language=en|volume=129|issue=3–5|pages=495–505|doi=10.1007/s00214-010-0887-3|issn=1432-881X|hdl=2043/12984|s2cid=54680128|hdl-access=free}}</ref> but in fact it does not impose such a limit, as such resonances can be interpreted as Gamow states. The accurate description of such states in a multi-electron system, needed to extend calculations and the periodic table past ''Z''<sub>cr</sub>&nbsp;≈&nbsp;172, are however still open problems.<ref name=gamowstates>{{cite journal |last1=Smits |first1=O. R. |last2=Indelicato |first2=P. |first3=W. |last3=Nazarewicz |first4=M. |last4=Piibeleht |first5=P. |last5=Schwerdtfeger |date=2023 |title=Pushing the limits of the periodic table—A review on atomic relativistic electronic structure theory and calculations for the superheavy elements |url= |journal=Physics Reports |volume=1035 |issue= |pages=1–57 |doi=10.1016/j.physrep.2023.09.004 |access-date=|arxiv=2301.02553 |bibcode=2023PhR..1035....1S }}</ref>

where ''m'' is the rest mass of the electron.<ref>{{cite web |title=Solution of the Dirac Equation for Hydrogen |url=https://quantummechanics.ucsd.edu/ph130a/130_notes/node501.html}}</ref> For ''Z''&nbsp;>&nbsp;137, the wave function of the Dirac ground state is oscillatory, rather than bound, and there is no gap between the positive and negative energy spectra, as in the [[Klein paradox]].<ref>{{cite book|first1=J. D.|last1= Bjorken|first2=S. D.|last2= Drell|year=1964|title=Relativistic Quantum Mechanics|url=https://archive.org/details/relativisticquan0000bjor|url-access=registration|publisher=[[McGraw-Hill]]}}</ref> More accurate calculations taking into account the effects of the finite size of the nucleus indicate that the binding energy first exceeds 2''mc''<sup>2</sup> for ''Z''&nbsp;>&nbsp;''Z''<sub>cr</sub> probably between 168 and 172.<ref name=gamowstates/> For ''Z''&nbsp;>&nbsp;''Z''<sub>cr</sub>, if the innermost orbital (1s) is not filled, the electric field of the nucleus will [[pair production|pull an electron out of the vacuum]], resulting in the spontaneous emission of a [[positron]].<ref>{{cite journal|first1=W. |last1=Greiner|first2= S. |last2=Schramm |year=2008|title=Resource Letter QEDV-1: The QED vacuum |journal=[[American Journal of Physics]] |volume=76 |issue=6|pages=509 |doi=10.1119/1.2820395|bibcode=2008AmJPh..76..509G}}, and references therein</ref><ref>{{cite journal|last1=Wang|first1=Yang|last2=Wong|first2=Dillon|last3=Shytov|first3=Andrey V.|last4=Brar|first4=Victor W.|last5=Choi|first5=Sangkook|last6=Wu|first6=Qiong|last7=Tsai|first7=Hsin-Zon|last8=Regan|first8=William|last9=Zettl|first9=Alex|author9-link=Alex Zettl|last10=Kawakami|first10=Roland K.|last11=Louie|first11=Steven G.|last12=Levitov|first12=Leonid S.|last13=Crommie|first13=Michael F.|title=Observing Atomic Collapse Resonances in Artificial Nuclei on Graphene|journal=Science|date=May 10, 2013|volume=340|issue=6133|pages=734–737|doi=10.1126/science.1234320|arxiv = 1510.02890 |bibcode = 2013Sci...340..734W|pmid=23470728|s2cid=29384402}}</ref> This diving of the 1s subshell into the negative continuum has often been taken to constitute an "end" to the periodic table,<ref name=PT172/><ref name="rsc"/><ref>{{Cite journal|last1=Indelicato|first1=Paul|last2=Bieroń|first2=Jacek|last3=Jönsson|first3=Per|date=2011-06-01|title=Are MCDF calculations 101% correct in the super-heavy elements range?|url=https://dspace.mah.se/handle/2043/12984|journal=Theoretical Chemistry Accounts|language=en|volume=129|issue=3–5|pages=495–505|doi=10.1007/s00214-010-0887-3|issn=1432-881X|hdl=2043/12984|s2cid=54680128|hdl-access=free}}</ref> but in fact it does not impose such a limit, as such resonances can be interpreted as Gamow states. The accurate description of such states in a multi-electron system, needed to extend calculations and the periodic table past ''Z''<sub>cr</sub>&nbsp;≈&nbsp;172, are however still open problems.<ref name=gamowstates>{{cite journal |last1=Smits |first1=O. R. |last2=Indelicato |first2=P. |first3=W. |last3=Nazarewicz |first4=M. |last4=Piibeleht |first5=P. |last5=Schwerdtfeger |date=2023 |title=Pushing the limits of the periodic table—A review on atomic relativistic electronic structure theory and calculations for the superheavy elements |url= |journal=Physics Reports |volume=1035 |issue= |pages=1–57 |doi=10.1016/j.physrep.2023.09.004 |access-date=|arxiv=2301.02553 }}</ref>



Atoms with atomic numbers above ''Z''<sub>cr</sub>&nbsp;≈&nbsp;172 have been termed ''supercritical'' atoms. Supercritical atoms cannot be totally ionised because their 1s subshell would be filled by spontaneous pair creation in which an electron-positron pair is created from the negative continuum, with the electron being bound and the positron escaping. However, the strong field around the atomic nucleus is restricted to a very small region of space, so that the [[Pauli exclusion principle]] forbids further spontaneous pair creation once the subshells that have dived into the negative continuum are filled. Elements 173–184 have been termed ''weakly supercritical'' atoms as for them only the 1s shell has dived into the negative continuum; the 2p<sub>1/2</sub> shell is expected to join around element 185 and the 2s shell around element 245. Experiments have so far not succeeded in detecting spontaneous pair creation from assembling supercritical charges through the collision of heavy nuclei (e.g. colliding lead with uranium to momentarily give an effective ''Z'' of 174; uranium with uranium gives effective ''Z''&nbsp;=&nbsp;184 and uranium with californium gives effective ''Z''&nbsp;=&nbsp;190).<ref>{{cite book|last1=Reinhardt|first1=Joachim|title = Nuclear Physics: Present and Future|pages=195–210|last2=Greiner|first2=Walter|doi=10.1007/978-3-319-10199-6_19|date=2015|chapter=Probing Supercritical Fields with Real and with Artificial Nuclei|isbn=978-3-319-10198-9}}</ref>

Atoms with atomic numbers above ''Z''<sub>cr</sub>&nbsp;≈&nbsp;172 have been termed ''supercritical'' atoms. Supercritical atoms cannot be totally ionised because their 1s subshell would be filled by spontaneous pair creation in which an electron-positron pair is created from the negative continuum, with the electron being bound and the positron escaping. However, the strong field around the atomic nucleus is restricted to a very small region of space, so that the [[Pauli exclusion principle]] forbids further spontaneous pair creation once the subshells that have dived into the negative continuum are filled. Elements 173–184 have been termed ''weakly supercritical'' atoms as for them only the 1s shell has dived into the negative continuum; the 2p<sub>1/2</sub> shell is expected to join around element 185 and the 2s shell around element 245. Experiments have so far not succeeded in detecting spontaneous pair creation from assembling supercritical charges through the collision of heavy nuclei (e.g. colliding lead with uranium to momentarily give an effective ''Z'' of 174; uranium with uranium gives effective ''Z''&nbsp;=&nbsp;184 and uranium with californium gives effective ''Z''&nbsp;=&nbsp;190).<ref>{{cite book|last1=Reinhardt|first1=Joachim|title = Nuclear Physics: Present and Future|pages=195–210|last2=Greiner|first2=Walter|doi=10.1007/978-3-319-10199-6_19|date=2015|chapter=Probing Supercritical Fields with Real and with Artificial Nuclei|isbn=978-3-319-10198-9}}</ref>

Line 1,068: Line 1,068:

It is also possible that no further islands actually exist beyond 126, as the nuclear shell structure gets smeared out (as the electron shell structure already is expected to be around oganesson) and low-energy decay modes become readily available.<ref name=relqed>{{cite journal |last1=Schwerdtfeger |first1=Peter |last2=Pašteka |first2=Lukáš F. |last3=Punnett |first3=Andrew |last4=Bowman |first4=Patrick O. |date=2015 |title=Relativistic and quantum electrodynamic effects in superheavy elements |journal=Nuclear Physics A |volume=944 |issue=December 2015 |pages=551–577 |doi=10.1016/j.nuclphysa.2015.02.005|bibcode=2015NuPhA.944..551S }}</ref>

It is also possible that no further islands actually exist beyond 126, as the nuclear shell structure gets smeared out (as the electron shell structure already is expected to be around oganesson) and low-energy decay modes become readily available.<ref name=relqed>{{cite journal |last1=Schwerdtfeger |first1=Peter |last2=Pašteka |first2=Lukáš F. |last3=Punnett |first3=Andrew |last4=Bowman |first4=Patrick O. |date=2015 |title=Relativistic and quantum electrodynamic effects in superheavy elements |journal=Nuclear Physics A |volume=944 |issue=December 2015 |pages=551–577 |doi=10.1016/j.nuclphysa.2015.02.005|bibcode=2015NuPhA.944..551S }}</ref>



In some regions of the table of nuclides, there are expected to be additional regions of stability due to non-spherical nuclei that have different magic numbers than spherical nuclei do; the egg-shaped <sup>270</sup>[[Hassium|Hs]] {{nowrap|1=(''Z'' = 108, ''N'' = 162)}} is one such deformed doubly magic nucleus.<ref>{{cite journal|last1=Dvorak|first1=J.|last2=Brüchle|first2=W.|last3=Chelnokov|first3=M.|last4=Dressler|first4=R.|last5=Düllmann|first5=Ch. E.|last6=Eberhardt|first6=K.|last7=Gorshkov|first7=V.|last8=Jäger|first8=E.|last9=Krücken|first9=R.|last10=Kuznetsov|first10=A.|last11=Nagame|first11=Y.|last12=Nebel|first12=F.|last13=Novackova|first13=Z.|last14=Qin|first14=Z.|last15=Schädel|first15=M.|last16=Schausten|first16=B.|last17=Schimpf|first17=E.|last18=Semchenkov|first18=A.|last19=Thörle|first19=P.|last20=Türler|first20=A.|last21=Wegrzecki|first21=M.|last22=Wierczinski|first22=B.|last23=Yakushev|first23=A.|last24=Yeremin|first24=A.|title=Doubly Magic Nucleus <sub>108</sub><sup>270</sup>Hs<sub>162</sub> |journal=Physical Review Letters|volume=97|issue=24|pages=242501|year=2006|doi=10.1103/PhysRevLett.97.242501|pmid=17280272|bibcode=2006PhRvL..97x2501D|url=https://www.dora.lib4ri.ch/psi/islandora/object/psi%3A16351}}</ref> In the superheavy region, the strong Coulomb repulsion of protons may cause some nuclei, including isotopes of oganesson, to assume a bubble shape in the ground state with a reduced central density of protons, unlike the roughly uniform distribution inside most smaller nuclei.<ref>{{cite journal |last1=LaForge |first1=Evan |last2=Price |first2=Will |last3=Rafelski |first3=Johann |title=Superheavy elements and ultradense matter |journal=The European Physical Journal Plus |date=15 September 2023 |volume=138 |issue=9 |page=812 |doi=10.1140/epjp/s13360-023-04454-8|arxiv=2306.11989 |bibcode=2023EPJP..138..812L }}</ref><ref>{{cite news |title=Physicists are pushing the periodic table to its limits {{!}} Science News |url=https://www.sciencenews.org/article/physics-periodic-table-future-superheavy-elements |access-date=25 December 2023 |date=27 February 2019}}</ref> Such a shape would have a very low fission barrier, however.<ref>{{cite journal |last1=Dechargé |first1=J. |last2=Berger |first2=J.-F. |last3=Girod |first3=M. |last4=Dietrich |first4=K. |title=Bubbles and semi-bubbles as a new kind of superheavy nuclei |journal=Nuclear Physics A |date=March 2003 |volume=716 |pages=55–86 |doi=10.1016/S0375-9474(02)01398-2|bibcode=2003NuPhA.716...55D }}</ref> Even heavier nuclei in some regions, such as <sup>342</sup>136 and <sup>466</sup>156, may instead become [[torus|toroidal]] or [[red blood cell]]-like in shape, with their own magic numbers and islands of stability, but they would also fragment easily.<ref>{{cite journal |last1=Agbemava |first1=S. E. |last2=Afanasjev |first2=A. V. |title=Hyperheavy spherical and toroidal nuclei: The role of shell structure |journal=Physical Review C |date=25 March 2021 |volume=103 |issue=3 |pages=034323 |doi=10.1103/PhysRevC.103.034323 |arxiv=2012.13799|bibcode=2021PhRvC.103c4323A }}</ref><ref>{{cite journal |last1=Afanasjev |first1=A.V. |last2=Agbemava |first2=S.E. |last3=Gyawali |first3=A. |title=Hyperheavy nuclei: Existence and stability |journal=Physics Letters B |date=July 2018 |volume=782 |pages=533–540 |doi=10.1016/j.physletb.2018.05.070|doi-access=free |arxiv=1804.06395 |bibcode=2018PhLB..782..533A }}</ref>

In some regions of the table of nuclides, there are expected to be additional regions of stability due to non-spherical nuclei that have different magic numbers than spherical nuclei do; the egg-shaped <sup>270</sup>[[Hassium|Hs]] {{nowrap|1=(''Z'' = 108, ''N'' = 162)}} is one such deformed doubly magic nucleus.<ref>{{cite journal|last1=Dvorak|first1=J.|last2=Brüchle|first2=W.|last3=Chelnokov|first3=M.|last4=Dressler|first4=R.|last5=Düllmann|first5=Ch. E.|last6=Eberhardt|first6=K.|last7=Gorshkov|first7=V.|last8=Jäger|first8=E.|last9=Krücken|first9=R.|last10=Kuznetsov|first10=A.|last11=Nagame|first11=Y.|last12=Nebel|first12=F.|last13=Novackova|first13=Z.|last14=Qin|first14=Z.|last15=Schädel|first15=M.|last16=Schausten|first16=B.|last17=Schimpf|first17=E.|last18=Semchenkov|first18=A.|last19=Thörle|first19=P.|last20=Türler|first20=A.|last21=Wegrzecki|first21=M.|last22=Wierczinski|first22=B.|last23=Yakushev|first23=A.|last24=Yeremin|first24=A.|title=Doubly Magic Nucleus <sub>108</sub><sup>270</sup>Hs<sub>162</sub> |journal=Physical Review Letters|volume=97|issue=24|pages=242501|year=2006|doi=10.1103/PhysRevLett.97.242501|pmid=17280272|bibcode=2006PhRvL..97x2501D|url=https://www.dora.lib4ri.ch/psi/islandora/object/psi%3A16351}}</ref> In the superheavy region, the strong Coulomb repulsion of protons may cause some nuclei, including isotopes of oganesson, to assume a bubble shape in the ground state with a reduced central density of protons, unlike the roughly uniform distribution inside most smaller nuclei.<ref>{{cite journal |last1=LaForge |first1=Evan |last2=Price |first2=Will |last3=Rafelski |first3=Johann |title=Superheavy elements and ultradense matter |journal=The European Physical Journal Plus |date=15 September 2023 |volume=138 |issue=9 |doi=10.1140/epjp/s13360-023-04454-8|arxiv=2306.11989 }}</ref><ref>{{cite news |title=Physicists are pushing the periodic table to its limits {{!}} Science News |url=https://www.sciencenews.org/article/physics-periodic-table-future-superheavy-elements |access-date=25 December 2023 |date=27 February 2019}}</ref> Such a shape would have a very low fission barrier, however.<ref>{{cite journal |last1=Dechargé |first1=J. |last2=Berger |first2=J.-F. |last3=Girod |first3=M. |last4=Dietrich |first4=K. |title=Bubbles and semi-bubbles as a new kind of superheavy nuclei |journal=Nuclear Physics A |date=March 2003 |volume=716 |pages=55–86 |doi=10.1016/S0375-9474(02)01398-2}}</ref> Even heavier nuclei in some regions, such as <sup>342</sup>136 and <sup>466</sup>156, may instead become [[torus|toroidal]] or [[red blood cell]]-like in shape, with their own magic numbers and islands of stability, but they would also fragment easily.<ref>{{cite journal |last1=Agbemava |first1=S. E. |last2=Afanasjev |first2=A. V. |title=Hyperheavy spherical and toroidal nuclei: The role of shell structure |journal=Physical Review C |date=25 March 2021 |volume=103 |issue=3 |pages=034323 |doi=10.1103/PhysRevC.103.034323 |arxiv=2012.13799}}</ref><ref>{{cite journal |last1=Afanasjev |first1=A.V. |last2=Agbemava |first2=S.E. |last3=Gyawali |first3=A. |title=Hyperheavy nuclei: Existence and stability |journal=Physics Letters B |date=July 2018 |volume=782 |pages=533–540 |doi=10.1016/j.physletb.2018.05.070|doi-access=free |arxiv=1804.06395 }}</ref>



====Predicted decay properties of undiscovered elements====

====Predicted decay properties of undiscovered elements====

By publishing changes, you agree to the Terms of Use, and you irrevocably agree to release your contribution under the CC BY-SA 4.0 License and the GFDL. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel Editing help (opens in new window)

Copy and paste: – — ° ′ ″ ≈ ≠ ≤ ≥ ± − × ÷ ← → · §   Cite your sources: <ref></ref>


{{}}   {{{}}}   |   []   [[]]   [[Category:]]   #REDIRECT [[]]   &nbsp;   <s></s>   <sup></sup>   <sub></sub>   <code></code>   <pre></pre>   <blockquote></blockquote>   <ref></ref> <ref name="" />   {{Reflist}}   <references />   <includeonly></includeonly>   <noinclude></noinclude>   {{DEFAULTSORT:}}   <nowiki></nowiki>   <!-- -->   <span class="plainlinks"></span>


Symbols: ~ | ¡ ¿ † ‡ ↔ ↑ ↓ • ¶   # ∞   ‹› «»   ¤ ₳ ฿ ₵ ¢ ₡ ₢ $ ₫ ₯ € ₠ ₣ ƒ ₴ ₭ ₤ ℳ ₥ ₦ № ₧ ₰ £ ៛ ₨ ₪ ৳ ₮ ₩ ¥   ♠ ♣ ♥ ♦   𝄫 ♭ ♮ ♯ 𝄪   © ® ™
Latin: A a Á á À à  â Ä ä Ǎ ǎ Ă ă Ā ā à ã Å å Ą ą Æ æ Ǣ ǣ   B b   C c Ć ć Ċ ċ Ĉ ĉ Č č Ç ç   D d Ď ď Đ đ Ḍ ḍ Ð ð   E e É é È è Ė ė Ê ê Ë ë Ě ě Ĕ ĕ Ē ē Ẽ ẽ Ę ę Ẹ ẹ Ɛ ɛ Ǝ ǝ Ə ə   F f   G g Ġ ġ Ĝ ĝ Ğ ğ Ģ ģ   H h Ĥ ĥ Ħ ħ Ḥ ḥ   I i İ ı Í í Ì ì Î î Ï ï Ǐ ǐ Ĭ ĭ Ī ī Ĩ ĩ Į į Ị ị   J j Ĵ ĵ   K k Ķ ķ   L l Ĺ ĺ Ŀ ŀ Ľ ľ Ļ ļ Ł ł Ḷ ḷ Ḹ ḹ   M m Ṃ ṃ   N n Ń ń Ň ň Ñ ñ Ņ ņ Ṇ ṇ Ŋ ŋ   O o Ó ó Ò ò Ô ô Ö ö Ǒ ǒ Ŏ ŏ Ō ō Õ õ Ǫ ǫ Ọ ọ Ő ő Ø ø Œ œ   Ɔ ɔ   P p   Q q   R r Ŕ ŕ Ř ř Ŗ ŗ Ṛ ṛ Ṝ ṝ   S s Ś ś Ŝ ŝ Š š Ş ş Ș ș Ṣ ṣ ß   T t Ť ť Ţ ţ Ț ț Ṭ ṭ Þ þ   U u Ú ú Ù ù Û û Ü ü Ǔ ǔ Ŭ ŭ Ū ū Ũ ũ Ů ů Ų ų Ụ ụ Ű ű Ǘ ǘ Ǜ ǜ Ǚ ǚ Ǖ ǖ   V v   W w Ŵ ŵ   X x   Y y Ý ý Ŷ ŷ Ÿ ÿ Ỹ ỹ Ȳ ȳ   Z z Ź ź Ż ż Ž ž   ß Ð ð Þ þ Ŋ ŋ Ə ə
Greek: Ά ά Έ έ Ή ή Ί ί Ό ό Ύ ύ Ώ ώ   Α α Β β Γ γ Δ δ   Ε ε Ζ ζ Η η Θ θ   Ι ι Κ κ Λ λ Μ μ   Ν ν Ξ ξ Ο ο Π π   Ρ ρ Σ σ ς Τ τ Υ υ   Φ φ Χ χ Ψ ψ Ω ω   {{Polytonic|}}
Cyrillic: А а Б б В в Г г   Ґ ґ Ѓ ѓ Д д Ђ ђ   Е е Ё ё Є є Ж ж   З з Ѕ ѕ И и І і   Ї ї Й й Ј ј К к   Ќ ќ Л л Љ љ М м   Н н Њ њ О о П п   Р р С с Т т Ћ ћ   У у Ў ў Ф ф Х х   Ц ц Ч ч Џ џ Ш ш   Щ щ Ъ ъ Ы ы Ь ь   Э э Ю ю Я я   ́
IPA: t̪ d̪ ʈ ɖ ɟ ɡ ɢ ʡ ʔ   ɸ β θ ð ʃ ʒ ɕ ʑ ʂ ʐ ç ʝ ɣ χ ʁ ħ ʕ ʜ ʢ ɦ   ɱ ɳ ɲ ŋ ɴ   ʋ ɹ ɻ ɰ   ʙ ⱱ ʀ ɾ ɽ   ɫ ɬ ɮ ɺ ɭ ʎ ʟ   ɥ ʍ ɧ   ʼ   ɓ ɗ ʄ ɠ ʛ   ʘ ǀ ǃ ǂ ǁ   ɨ ʉ ɯ   ɪ ʏ ʊ   ø ɘ ɵ ɤ   ə ɚ   ɛ œ ɜ ɝ ɞ ʌ ɔ   æ   ɐ ɶ ɑ ɒ   ʰ ʱ ʷ ʲ ˠ ˤ ⁿ ˡ   ˈ ˌ ː ˑ ̪   {{IPA|}}

Wikidata entities used in this page

Pages transcluded onto the current version of this page (help):

This page is a member of 11 hidden categories (help):


Retrieved from "https://en.wikipedia.org/wiki/Extended_periodic_table"







Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki