Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 

















Editing Ice sheet

















Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Page information
Get shortened URL
Download QR code
Wikidata item
 
















Appearance
   

 










You are not logged in. Your IP address will be publicly visible if you make any edits. If you log inorcreate an account, your edits will be attributed to a username, among other benefits.

 Content that violates any copyrights will be deleted. Encyclopedic content must be verifiable through citations to reliable sources.


Latest revision Your text
Line 26: Line 26:

Even stable ice sheets are continually in motion as the ice gradually flows outward from the central plateau, which is the tallest point of the ice sheet, and towards the margins. The ice sheet slope is low around the plateau but increases steeply at the margins.<ref name="IPCC_AR6_AnnexVII" /> This difference in slope occurs due to an imbalance between high ice accumulation in the central plateau and lower accumulation, as well as higher [[ablation]], at the margins. This imbalance increases the [[shear stress]] on a glacier until it begins to flow. The flow velocity and deformation will increase as the equilibrium line between these two processes is approached.<ref name="Easterbrook">Easterbrook, Don J., Surface Processes and Landforms, 2nd Edition, Prentice-Hall Inc., 1999{{page needed|date=February 2014}}</ref><ref name="GreveBlatter2009">{{cite book|author1=Greve, R. |author2=Blatter, H. |year=2009|title=Dynamics of Ice Sheets and Glaciers|publisher=Springer|doi=10.1007/978-3-642-03415-2|isbn=978-3-642-03414-5}}{{pn|date=October 2021}}</ref> This motion is driven by [[gravity]] but is controlled by temperature and the strength of individual glacier bases. A number of processes alter these two factors, resulting in cyclic surges of activity interspersed with longer periods of inactivity, on time scales ranging from hourly (i.e. tidal flows) to the [[wikt:centennial|centennial]] (Milankovich cycles).<ref name="GreveBlatter2009" />

Even stable ice sheets are continually in motion as the ice gradually flows outward from the central plateau, which is the tallest point of the ice sheet, and towards the margins. The ice sheet slope is low around the plateau but increases steeply at the margins.<ref name="IPCC_AR6_AnnexVII" /> This difference in slope occurs due to an imbalance between high ice accumulation in the central plateau and lower accumulation, as well as higher [[ablation]], at the margins. This imbalance increases the [[shear stress]] on a glacier until it begins to flow. The flow velocity and deformation will increase as the equilibrium line between these two processes is approached.<ref name="Easterbrook">Easterbrook, Don J., Surface Processes and Landforms, 2nd Edition, Prentice-Hall Inc., 1999{{page needed|date=February 2014}}</ref><ref name="GreveBlatter2009">{{cite book|author1=Greve, R. |author2=Blatter, H. |year=2009|title=Dynamics of Ice Sheets and Glaciers|publisher=Springer|doi=10.1007/978-3-642-03415-2|isbn=978-3-642-03414-5}}{{pn|date=October 2021}}</ref> This motion is driven by [[gravity]] but is controlled by temperature and the strength of individual glacier bases. A number of processes alter these two factors, resulting in cyclic surges of activity interspersed with longer periods of inactivity, on time scales ranging from hourly (i.e. tidal flows) to the [[wikt:centennial|centennial]] (Milankovich cycles).<ref name="GreveBlatter2009" />



On an unrelated hour-to-hour basis, surges of ice motion can be modulated by tidal activity. The influence of a 1&nbsp;m tidal oscillation can be felt as much as 100&nbsp;km from the sea.<ref name=Clarke2005>{{cite journal | author = Clarke, G. K. C. |title=Subglacial processes |journal=Annual Review of Earth and Planetary Sciences |volume=33 |issue=1 |pages=247–276 |year=2005 |doi=10.1146/annurev.earth.33.092203.122621 |bibcode = 2005AREPS..33..247C }}</ref> During larger [[spring tide]]s, an ice stream will remain almost stationary for hours at a time, before a surge of around a foot in under an hour, just after the peak high tide; a stationary period then takes hold until another surge towards the middle or end of the falling tide.<ref name=Bindschalder2003>{{cite journal |last1=Bindschadler |first1=Robert A. |last2=King |first2=Matt A. |last3=Alley |first3=Richard B. |last4=Anandakrishnan |first4=Sridhar |last5=Padman |first5=Laurence |title=Tidally Controlled Stick-Slip Discharge of a West Antarctic Ice |journal=Science |date=22 August 2003 |volume=301 |issue=5636 |pages=1087–1089 |doi=10.1126/science.1087231 |pmid=12934005 |s2cid=37375591 |url=https://zenodo.org/record/1230832 }}</ref><ref name=Anandakrishnan2003>{{cite journal |last1=Anandakrishnan |first1=S. |last2=Voigt |first2=D. E. |last3=Alley |first3=R. B. |last4=King |first4=M. A. |title=Ice stream D flow speed is strongly modulated by the tide beneath the Ross Ice Shelf |journal=Geophysical Research Letters |date=April 2003 |volume=30 |issue=7 |page=1361 |doi=10.1029/2002GL016329 |bibcode=2003GeoRL..30.1361A |s2cid=53347069 |doi-access=free }}</ref> At neap tides, this interaction is less pronounced, and surges instead occur approximately every 12 hours.<ref name=Bindschalder2003/>

On an hour-to-hour basis, surges of ice motion can be modulated by tidal activity. The influence of a 1&nbsp;m tidal oscillation can be felt as much as 100&nbsp;km from the sea.<ref name=Clarke2005>{{cite journal | author = Clarke, G. K. C. |title=Subglacial processes |journal=Annual Review of Earth and Planetary Sciences |volume=33 |issue=1 |pages=247–276 |year=2005 |doi=10.1146/annurev.earth.33.092203.122621 |bibcode = 2005AREPS..33..247C }}</ref> During larger [[spring tide]]s, an ice stream will remain almost stationary for hours at a time, before a surge of around a foot in under an hour, just after the peak high tide; a stationary period then takes hold until another surge towards the middle or end of the falling tide.<ref name=Bindschalder2003>{{cite journal |last1=Bindschadler |first1=Robert A. |last2=King |first2=Matt A. |last3=Alley |first3=Richard B. |last4=Anandakrishnan |first4=Sridhar |last5=Padman |first5=Laurence |title=Tidally Controlled Stick-Slip Discharge of a West Antarctic Ice |journal=Science |date=22 August 2003 |volume=301 |issue=5636 |pages=1087–1089 |doi=10.1126/science.1087231 |pmid=12934005 |s2cid=37375591 |url=https://zenodo.org/record/1230832 }}</ref><ref name=Anandakrishnan2003>{{cite journal |last1=Anandakrishnan |first1=S. |last2=Voigt |first2=D. E. |last3=Alley |first3=R. B. |last4=King |first4=M. A. |title=Ice stream D flow speed is strongly modulated by the tide beneath the Ross Ice Shelf |journal=Geophysical Research Letters |date=April 2003 |volume=30 |issue=7 |page=1361 |doi=10.1029/2002GL016329 |bibcode=2003GeoRL..30.1361A |s2cid=53347069 |doi-access=free }}</ref> At neap tides, this interaction is less pronounced, and surges instead occur approximately every 12 hours.<ref name=Bindschalder2003/>



Increasing global air temperatures due to climate change take around 10,000 years to directly propagate through the ice before they influence bed temperatures, but may have an effect through increased surface melting, producing more [[supraglacial lake]]s. These lakes may feed warm water to glacial bases and facilitate glacial motion.<ref name=IPCCc4>Sections 4.5 and 4.6 of {{IPCC4/wg1/4}}</ref> Lakes of a diameter greater than ~300&nbsp;m are capable of creating a fluid-filled crevasse to the glacier/bed interface. When these crevasses form, the entirety of the lake's (relatively warm) contents can reach the base of the glacier in as little as 2–18 hours – lubricating the bed and causing the glacier to [[surge (glacier)|surge]].<ref name=Krawczynski2007>{{cite conference |last1=Krawczynski |first1=M. J. |last2=Behn |first2=M. D. |last3=Das |first3=S. B. |last4=Joughin |first4=I. |title=Constraints on melt-water flux through the West Greenland ice-sheet: modeling of hydro- fracture drainage of supraglacial lakes |date=1 December 2007 |pages=C41B–0474 |bibcode=2007AGUFM.C41B0474K |url=http://www.agu.org/cgi-bin/wais?jj=C41B-0474 |archive-url = https://archive.today/20121228013531/http://www.agu.org/cgi-bin/wais?jj=C41B-0474 |url-status=dead |archive-date=2012-12-28 |access-date=2008-03-04 |book-title=Eos Trans. AGU |volume=88 |issue=52 }}</ref> Water that reaches the bed of a glacier may freeze there, increasing the thickness of the glacier by pushing it up from below.<ref name="Bell2011">{{Cite journal | last1 = Bell | first1 = R. E. | last2 = Ferraccioli | first2 = F. | last3 = Creyts | first3 = T. T. | last4 = Braaten | first4 = D. | last5 = Corr | first5 = H. | last6 = Das | first6 = I. | last7 = Damaske | first7 = D. | last8 = Frearson | first8 = N. | last9 = Jordan | first9 = T. | last10 = Rose | doi = 10.1126/science.1200109 | first10 = K. | last11 = Studinger | first11 = M. | last12 = Wolovick | first12 = M. | title = Widespread Persistent Thickening of the East Antarctic Ice Sheet by Freezing from the Base | journal = Science | volume = 331 | issue = 6024 | pages = 1592–1595 | year = 2011 | pmid = 21385719| bibcode = 2011Sci...331.1592B | s2cid = 45110037 }}</ref>

Increasing global air temperatures due to climate change take around 10,000 years to directly propagate through the ice before they influence bed temperatures, but may have an effect through increased surface melting, producing more [[supraglacial lake]]s. These lakes may feed warm water to glacial bases and facilitate glacial motion.<ref name=IPCCc4>Sections 4.5 and 4.6 of {{IPCC4/wg1/4}}</ref> Lakes of a diameter greater than ~300&nbsp;m are capable of creating a fluid-filled crevasse to the glacier/bed interface. When these crevasses form, the entirety of the lake's (relatively warm) contents can reach the base of the glacier in as little as 2–18 hours – lubricating the bed and causing the glacier to [[surge (glacier)|surge]].<ref name=Krawczynski2007>{{cite conference |last1=Krawczynski |first1=M. J. |last2=Behn |first2=M. D. |last3=Das |first3=S. B. |last4=Joughin |first4=I. |title=Constraints on melt-water flux through the West Greenland ice-sheet: modeling of hydro- fracture drainage of supraglacial lakes |date=1 December 2007 |pages=C41B–0474 |bibcode=2007AGUFM.C41B0474K |url=http://www.agu.org/cgi-bin/wais?jj=C41B-0474 |archive-url = https://archive.today/20121228013531/http://www.agu.org/cgi-bin/wais?jj=C41B-0474 |url-status=dead |archive-date=2012-12-28 |access-date=2008-03-04 |book-title=Eos Trans. AGU |volume=88 |issue=52 }}</ref> Water that reaches the bed of a glacier may freeze there, increasing the thickness of the glacier by pushing it up from below.<ref name="Bell2011">{{Cite journal | last1 = Bell | first1 = R. E. | last2 = Ferraccioli | first2 = F. | last3 = Creyts | first3 = T. T. | last4 = Braaten | first4 = D. | last5 = Corr | first5 = H. | last6 = Das | first6 = I. | last7 = Damaske | first7 = D. | last8 = Frearson | first8 = N. | last9 = Jordan | first9 = T. | last10 = Rose | doi = 10.1126/science.1200109 | first10 = K. | last11 = Studinger | first11 = M. | last12 = Wolovick | first12 = M. | title = Widespread Persistent Thickening of the East Antarctic Ice Sheet by Freezing from the Base | journal = Science | volume = 331 | issue = 6024 | pages = 1592–1595 | year = 2011 | pmid = 21385719| bibcode = 2011Sci...331.1592B | s2cid = 45110037 }}</ref>

By publishing changes, you agree to the Terms of Use, and you irrevocably agree to release your contribution under the CC BY-SA 4.0 License and the GFDL. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel Editing help (opens in new window)

Copy and paste: – — ° ′ ″ ≈ ≠ ≤ ≥ ± − × ÷ ← → · §   Cite your sources: <ref></ref>


{{}}   {{{}}}   |   []   [[]]   [[Category:]]   #REDIRECT [[]]   &nbsp;   <s></s>   <sup></sup>   <sub></sub>   <code></code>   <pre></pre>   <blockquote></blockquote>   <ref></ref> <ref name="" />   {{Reflist}}   <references />   <includeonly></includeonly>   <noinclude></noinclude>   {{DEFAULTSORT:}}   <nowiki></nowiki>   <!-- -->   <span class="plainlinks"></span>


Symbols: ~ | ¡ ¿ † ‡ ↔ ↑ ↓ • ¶   # ∞   ‹› «»   ¤ ₳ ฿ ₵ ¢ ₡ ₢ $ ₫ ₯ € ₠ ₣ ƒ ₴ ₭ ₤ ℳ ₥ ₦ № ₧ ₰ £ ៛ ₨ ₪ ৳ ₮ ₩ ¥   ♠ ♣ ♥ ♦   𝄫 ♭ ♮ ♯ 𝄪   © ® ™
Latin: A a Á á À à  â Ä ä Ǎ ǎ Ă ă Ā ā à ã Å å Ą ą Æ æ Ǣ ǣ   B b   C c Ć ć Ċ ċ Ĉ ĉ Č č Ç ç   D d Ď ď Đ đ Ḍ ḍ Ð ð   E e É é È è Ė ė Ê ê Ë ë Ě ě Ĕ ĕ Ē ē Ẽ ẽ Ę ę Ẹ ẹ Ɛ ɛ Ǝ ǝ Ə ə   F f   G g Ġ ġ Ĝ ĝ Ğ ğ Ģ ģ   H h Ĥ ĥ Ħ ħ Ḥ ḥ   I i İ ı Í í Ì ì Î î Ï ï Ǐ ǐ Ĭ ĭ Ī ī Ĩ ĩ Į į Ị ị   J j Ĵ ĵ   K k Ķ ķ   L l Ĺ ĺ Ŀ ŀ Ľ ľ Ļ ļ Ł ł Ḷ ḷ Ḹ ḹ   M m Ṃ ṃ   N n Ń ń Ň ň Ñ ñ Ņ ņ Ṇ ṇ Ŋ ŋ   O o Ó ó Ò ò Ô ô Ö ö Ǒ ǒ Ŏ ŏ Ō ō Õ õ Ǫ ǫ Ọ ọ Ő ő Ø ø Œ œ   Ɔ ɔ   P p   Q q   R r Ŕ ŕ Ř ř Ŗ ŗ Ṛ ṛ Ṝ ṝ   S s Ś ś Ŝ ŝ Š š Ş ş Ș ș Ṣ ṣ ß   T t Ť ť Ţ ţ Ț ț Ṭ ṭ Þ þ   U u Ú ú Ù ù Û û Ü ü Ǔ ǔ Ŭ ŭ Ū ū Ũ ũ Ů ů Ų ų Ụ ụ Ű ű Ǘ ǘ Ǜ ǜ Ǚ ǚ Ǖ ǖ   V v   W w Ŵ ŵ   X x   Y y Ý ý Ŷ ŷ Ÿ ÿ Ỹ ỹ Ȳ ȳ   Z z Ź ź Ż ż Ž ž   ß Ð ð Þ þ Ŋ ŋ Ə ə
Greek: Ά ά Έ έ Ή ή Ί ί Ό ό Ύ ύ Ώ ώ   Α α Β β Γ γ Δ δ   Ε ε Ζ ζ Η η Θ θ   Ι ι Κ κ Λ λ Μ μ   Ν ν Ξ ξ Ο ο Π π   Ρ ρ Σ σ ς Τ τ Υ υ   Φ φ Χ χ Ψ ψ Ω ω   {{Polytonic|}}
Cyrillic: А а Б б В в Г г   Ґ ґ Ѓ ѓ Д д Ђ ђ   Е е Ё ё Є є Ж ж   З з Ѕ ѕ И и І і   Ї ї Й й Ј ј К к   Ќ ќ Л л Љ љ М м   Н н Њ њ О о П п   Р р С с Т т Ћ ћ   У у Ў ў Ф ф Х х   Ц ц Ч ч Џ џ Ш ш   Щ щ Ъ ъ Ы ы Ь ь   Э э Ю ю Я я   ́
IPA: t̪ d̪ ʈ ɖ ɟ ɡ ɢ ʡ ʔ   ɸ β θ ð ʃ ʒ ɕ ʑ ʂ ʐ ç ʝ ɣ χ ʁ ħ ʕ ʜ ʢ ɦ   ɱ ɳ ɲ ŋ ɴ   ʋ ɹ ɻ ɰ   ʙ ⱱ ʀ ɾ ɽ   ɫ ɬ ɮ ɺ ɭ ʎ ʟ   ɥ ʍ ɧ   ʼ   ɓ ɗ ʄ ɠ ʛ   ʘ ǀ ǃ ǂ ǁ   ɨ ʉ ɯ   ɪ ʏ ʊ   ø ɘ ɵ ɤ   ə ɚ   ɛ œ ɜ ɝ ɞ ʌ ɔ   æ   ɐ ɶ ɑ ɒ   ʰ ʱ ʷ ʲ ˠ ˤ ⁿ ˡ   ˈ ˌ ː ˑ ̪   {{IPA|}}

Wikidata entities used in this page

Pages transcluded onto the current version of this page (help):

This page is a member of 12 hidden categories (help):


Retrieved from "https://en.wikipedia.org/wiki/Ice_sheet"







Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki