Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Applications  





2 See also  





3 Notes  





4 References  














6D (2,0) superconformal field theory









 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


In theoretical physics, the six-dimensional (2,0)-superconformal field theory is a quantum field theory whose existence is predicted by arguments in string theory. It is still poorly understood because there is no known description of the theory in terms of an action functional. Despite the inherent difficulty in studying this theory, it is considered to be an interesting object for a variety of reasons, both physical and mathematical.[1]

Applications

[edit]

The (2,0)-theory has proven to be important for studying the general properties of quantum field theories. Indeed, this theory subsumes a large number of mathematically interesting effective quantum field theories and points to new dualities relating these theories. For example, Luis Alday, Davide Gaiotto, and Yuji Tachikawa showed that by compactifying this theory on a surface, one obtains a four-dimensional quantum field theory, and there is a duality known as the AGT correspondence which relates the physics of this theory to certain physical concepts associated with the surface itself.[2] More recently, theorists have extended these ideas to study the theories obtained by compactifying down to three dimensions.[3]

In addition to its applications in quantum field theory, the (2,0)-theory has spawned a number of important results in pure mathematics. For example, the existence of the (2,0)-theory was used by Witten to give a "physical" explanation for a conjectural relationship in mathematics called the geometric Langlands correspondence.[4] In subsequent work, Witten showed that the (2,0)-theory could be used to understand a concept in mathematics called Khovanov homology.[5] Developed by Mikhail Khovanov around 2000, Khovanov homology provides a tool in knot theory, the branch of mathematics that studies and classifies the different shapes of knots.[6] Another application of the (2,0)-theory in mathematics is the work of Davide Gaiotto, Greg Moore, and Andrew Neitzke, which used physical ideas to derive new results in hyperkähler geometry.[7]

See also

[edit]

Notes

[edit]
  1. ^ Moore 2012
  • ^ Alday, Gaiotto, and Tachikawa 2010
  • ^ Dimofte, Gaiotto, Gukov 2010
  • ^ Witten 2009
  • ^ Witten 2012
  • ^ Khovanov 2000
  • ^ Gaiotto, Moore, Neitzke 2013
  • References

    [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=6D_(2,0)_superconformal_field_theory&oldid=1108966903"

    Categories: 
    Conformal field theory
    Supersymmetric quantum field theory
    String theory
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
     



    This page was last edited on 7 September 2022, at 06:23 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki