Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Nomenclature  





2 Anomerization  



2.1  Mechanism of anomerization  







3 Physical properties and stability  





4 See also  





5 References  





6 External links  














Anomer






العربية
Català
Čeština
Deutsch
Eesti
Español
فارسی
Français
Galego

Hrvatski
Italiano
עברית
Nederlands

Polski
Português
Română
Русский
Slovenčina
Српски / srpski
Srpskohrvatski / српскохрватски
Suomi
Türkçe
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Incarbohydrate chemistry, a pair of anomers (from Greek ἄνω 'up, above', and μέρος 'part') is a pair of near-identical stereoisomers or diastereomers that differ at only the anomeric carbon, the carbon atom that bears the aldehydeorketone functional group in the sugar's open-chain form. However, in order for anomers to exist, the sugar must be in its cyclic form, since in open-chain form, the anomeric carbon atom is planar and thus achiral. More formally stated, then, an anomer is an epimer at the hemiacetal/hemiketal carbon atom in a cyclic saccharide.[1] Anomerization is the process of conversion of one anomer to the other. As is typical for stereoisomeric compounds, different anomers have different physical properties, melting points and specific rotations.

Nomenclature[edit]

Different projections of α-D-glucopyranose. 1 = Fischer projection with C-1 at the top of the anomeric centre. C-5 is the anomeric reference atom. 2, 3 = Haworth projections. 4 = Mills projection.

Every two anomers are designated alpha (α) or beta (β), according to the configurational relationship between the anomeric centre and the anomeric reference atom, hence they are relative stereodescriptors.[2] The anomeric centre in hemiacetals is the anomeric carbon C-1; in hemiketals, it is the carbon derived from the carbonyl of the ketone (e.g. C-2 in D-fructose). In aldohexoses the anomeric reference atom is the stereocenter that is farthest from anomeric carbon in the ring (the configurational atom, defining the sugar as DorL). For example, in α-D-glucopyranose the reference atom is C-5.

If in the cyclic Fischer projection[3] the exocyclic oxygen atom at the anomeric centre is cis (on the same side) to the exocyclic oxygen attached to the anomeric reference atom (in the OH group) the anomer is α. If the two oxygens are trans (on different sides) the anomer is β.[4] Thus, the absolute configurations of the anomeric carbon and the reference atom are the same (both R or both S) in the α anomer and opposite (one R and the other S) in the β anomer.[5]

Anomerization[edit]

Anomerization is the process of conversion of one anomer to the other. For reducing sugars, anomerization is referred to as mutarotation and occurs readily in solution and is catalyzed by acid and base. This reversible process typically leads to an anomeric mixture in which eventually an equilibrium is reached between the two single anomers.

The ratio of the two anomers is specific for the regarding sugar. For example, regardless of the configuration of the starting D-glucose, a solution will gradually move towards being a mixture of approximately 64% β-D-glucopyranoside and 36% of α-D-glucopyranose. As the ratio changes, the optical rotation of the mixture changes; this phenomenon is called mutarotation.

Mechanism of anomerization[edit]

Open-chain form as an intermediate product between α and β anomer
Open-chain form of D-galactose

Though the cyclic forms of sugars are usually heavily favoured, hemiacetals in aqueous solution are in equilibrium with their open-chain forms. In aldohexoses this equilibrium is established as the hemiacetal bond between C-1 (the carbon bound to two oxygens) and C-5 oxygen is cleaved (forming the open-chain compound) and reformed (forming the cyclic compound). When the hemiacetal group is reformed, the OH group on C-5 may attack either of the two stereochemically distinct sides of the aldehyde group on C-1. Which side it attacks on determines whether the α- or β-anomer is formed.

Anomerization of glycosides typically occurs under acidic conditions. Typically, anomerization occurs through protonation of the exocyclic acetal oxygen, ionization to form an oxocarbenium ion with release of an alcohol, and nucleophilic attack by an alcohol on the reverse face of the oxocarbenium ion, followed by deprotonation.

Physical properties and stability[edit]

Anomers are different in structure, and thus have different stabilizing and destabilizing effects from each other. The major contributors to the stability of a certain anomer are:

For D-glucopyranoside, the β-anomer is the more stable anomer in water. For D-mannopyranose, the α-anomer is the more stable anomer.

Because anomers are diastereomers of each other, they often differ in physical and chemical properties. One of the most important physical properties that is used to study anomers is the specific rotation, which can be monitored by polarimetry.

See also[edit]

References[edit]

  1. ^ Francis Carey (2000). Organic Chemistry, McGraw-Hill Higher Education press (4th ed.).
  • ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "α (alpha), β (beta)". doi:10.1351/goldbook.A00003
  • ^ "Chemistry - Queen Mary University of London".
  • ^ Nomenclature of Carbohydrates (Recommendations 1996) Archived 2010-10-27 at the Wayback Machine  PDF
  • ^ Varki, A.; Cummings, R. D.; Esko, J. D.; Freeze, H. H.; Stanley, P.; Bertozzi, C. R.; Hart, G. W.; Etzler, M. E.; Bertozzi, C. R.; Rabuka, D. (2009). "Structural Basis of Glycan Diversity". Essentials of Glycobiology. Cold Spring Harbor Laboratory Press. ISBN 9780879697709. PMID 20301274.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Anomer&oldid=1220706360"

    Categories: 
    Carbohydrate chemistry
    Carbohydrates
    Stereochemistry
    Hidden categories: 
    Webarchive template wayback links
    Articles with short description
    Short description is different from Wikidata
    Wikipedia introduction cleanup from July 2014
    All pages needing cleanup
    Articles covered by WikiProject Wikify from July 2014
    All articles covered by WikiProject Wikify
    Wikipedia articles that are too technical from May 2011
    All articles that are too technical
    Articles with multiple maintenance issues
    Commons category link from Wikidata
     



    This page was last edited on 25 April 2024, at 12:19 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki