Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 History  





2 Uses  



2.1  Shear thinning  





2.2  Concentrations used  







3 Safety  





4 Preparation  



4.1  Detail of the biosynthesis  







5 References  














Xanthan gum






العربية
Български
Català
Čeština
Dansk
Deutsch
Eesti
Español
Euskara
فارسی
Français
Galego

Bahasa Indonesia
Italiano
עברית
Magyar
Nederlands

Polski
Português
Русский
Simple English
Slovenščina
Svenska
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
Wikibooks
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Xanthan gum[1]
Names
Other names

E 415

Identifiers

CAS Number

ChemSpider
  • None
ECHA InfoCard 100.031.255 Edit this at Wikidata
EC Number
  • 234-394-2
E number E415 (thickeners, ...)
UNII

CompTox Dashboard (EPA)

Properties

Chemical formula

C35H49O29 (monomer)
Molar mass 933.748 g·mol−1
Hazards
Safety data sheet (SDS) MSDS

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

☒N verify (what is checkY☒N ?)

Infobox references

Xanthan gum (/ˈzænθən/) is a polysaccharide with many industrial uses, including as a common food additive. It is an effective thickening agent and stabilizer that prevents ingredients from separating. It can be produced from simple sugarsbyfermentation and derives its name from the speciesofbacteria used, Xanthomonas campestris.

History[edit]

Xanthan gum was discovered by Allene Rosalind Jeanes and her research team at the United States Department of Agriculture, and brought into commercial production by CP Kelco under the trade name Kelzan in the early 1960s.[2][3] It was approved for use in foods in 1968 and is accepted as a safe food additive in the US, Canada, European countries, and many other countries, with E number E415, and CAS number 11138-66-2.

Xanthan gum derives its name from the species of bacteria used during the fermentation process, Xanthomonas campestris.[4]

Uses[edit]

Xanthan gum, 1%, can produce a significant increase in the viscosity of a liquid.[5]

In foods, xanthan gum is common in salad dressings and sauces. It helps to prevent oil separation by stabilizing the emulsion, although it is not an emulsifier. Xanthan gum also helps suspend solid particles, such as spices. Xanthan gum helps create the desired texture in many ice creams. Toothpaste often contains xanthan gum as a binder to keep the product uniform. Xanthan gum also helps thicken commercial egg substitutes made from egg whites, to replace the fat and emulsifiers found in yolks. It is also a preferred method of thickening liquids for those with swallowing disorders, since it does not change the color or flavor of foods or beverages at typical use levels.[6]Ingluten-free baking, xanthan gum is used to give the dough or batter the stickiness that would otherwise be achieved with gluten. In most foods, it is used at concentrations of 0.5% or less. Xanthan gum is used in a wide range of food products, such as sauces, dressings, meat and poultry products, bakery products, confectionery products, beverages, dairy products, and others.

In the oil industry, xanthan gum is used in large quantities to thicken drilling mud.[7] These fluids carry the solids cut by the drilling bit to the surface. Xanthan gum provides improved "low end" rheology. When circulation stops, the solids remain suspended in the drilling fluid. The widespread use of horizontal drilling and the demand for good control of drilled solids has led to its expanded use. It has been added to concrete poured underwater, to increase its viscosity and prevent washout.

Incosmetics, xanthan gum is used to prepare water gels.[8] It is also used in oil-in-water emulsions to enhance droplet coalescence.[9] Xanthan gum is under preliminary research for its potential uses in tissue engineering to construct hydrogels and scaffolds supporting three-dimensional tissue formation.[8] Furthermore, thiolated xanthan gum (see thiomers) has shown potential for drug delivery,[10][11] since by the covalent attachment of thiol groups to this polysaccharide high mucoadhesive and permeation enhancing properties can be introduced.[12]

Shear thinning[edit]

The viscosity of xanthan gum solutions decreases with higher shear rates. This is called shear thinning or pseudoplasticity. This means that a product subjected to shear, whether from mixing, shaking or chewing, will thin. When the shear forces are removed, the food will thicken again. In salad dressing, the addition of xanthan gum makes it thick enough at rest in the bottle to keep the mixture fairly homogeneous, but the shear forces generated by shaking and pouring thins it, so it can be easily poured. When it exits the bottle, the shear forces are removed and it thickens again, so it clings to the salad. The rheology of xanthan aqua solutions become visco-elastic at higher concentrations of xanthan gum in water.[13]

Concentrations used[edit]

The greater the concentration of xanthan gum in a liquid, the thicker the liquid will become. An emulsion can be formed with as little as 0.1% (by weight). Increasing the concentration of gum gives a thicker, more stable emulsion up to 1% xanthan gum. A teaspoon of xanthan gum weighs about 2.5 grams and brings one cup (250 ml) of water to a 1% concentration.[6][14]

To make a foam, 0.2–0.8% xanthan gum is typically used. Larger amounts result in larger bubbles and denser foam. Egg white powder (0.2–2.0%) with 0.1–0.4% xanthan gum yields bubbles similar to soap bubbles.

Safety[edit]

According to a 2017 safety review by a scientific panel of the European Food Safety Authority (EFSA), xanthan gum (European food additive number E 415) is extensively digested during intestinal fermentation, and causes no adverse effects, even at high intake amounts.[15] The EFSA panel found no concern about genotoxicity from long-term consumption.[15] The EFSA concluded that there is no safety concern for the general population when xanthan gum is consumed as a food additive.[15]

Preparation[edit]

Xanthan gum is produced by the fermentationofglucose and sucrose.[4] The medium is well-aerated and stirred, and the xanthan polymer is produced extracellularly into the medium. After one to four days, the polymer is precipitated from the medium by the addition of isopropyl alcohol, and the precipitate is dried and milled to give a powder that is readily soluble in water or brine.[15]

It is composed of pentasaccharide repeat units, comprising glucose, mannose, and glucuronic acid in the molar ratio 2:2:1.[15][16]

A strain of X. campestris that will grow on lactose has been developed – which allows it to be used to process whey, a waste product of cheese production. This can produce 30 g/L of xanthan gum for every 40 g/L of whey powder. Whey-derived xanthan gum is commonly used in many commercial products, such as shampoos and salad dressings.[17]

Detail of the biosynthesis[edit]

Synthesis originates from glucose as substrate for synthesis of the sugar nucleotides precursors UDP-glucose, UDP-glucuronate, and GDP-mannose that are required for building the pentasaccharide repeat unit.[15] This links the synthesis of xanthan to carbohydrate metabolism. The repeat units are built up at undecaprenylphosphate lipid carriers that are anchored in the cytoplasmic membrane.[citation needed]

Specific glycosyltransferases sequentially transfer the sugar moieties of the nucleotide sugar xanthan precursors to the lipid carriers. Acetyl and pyruvyl residues are added as non-carbohydrate decorations. Mature repeat units are polymerized and exported in a way resembling the Wzy-dependent polysaccharide synthesis mechanism of Enterobacteriaceae. Products of the gum gene cluster drive synthesis, polymerization, and export of the repeat unit.[18]

References[edit]

  1. ^ "Sicherheitsdatenblatt des Herstellers Carl-Roth" [Safety data sheet from the manufacturer Carl-Roth] (PDF) (in German). Archived (PDF) from the original on 2011-07-18. Retrieved 2011-04-18.
  • ^ Whistler RL, BeMiller JN (1973). Industrial gums, polysaccharides and their derivatives (2nd ed.). New York: Academic Press. ISBN 978-0-12-746252-3.
  • ^ "KELZAN Xanthan Gum - CP Kelco". cpkelco.com. CP Kelco. Feb 18, 2019. Retrieved Feb 18, 2019. CP Kelco offers a range of biopolymers to thicken, suspend and stabilize emulsions and other water-based systems. The KELZAN xanthan gum line of industrial products can be used to modify the texture of industrial products and to stabilize household cleaners, fabric care products, suspensions, oil-in-water emulsions and foams against separation.
  • ^ a b Barrere GC, Barber CE, Daniels MJ (December 1986). "Molecular cloning of genes involved in the production of the extracellular polysaccharide xanthan by Xanthomonas campestris pv. campestris". International Journal of Biological Macromolecules. 8 (6): 372–374. doi:10.1016/0141-8130(86)90058-9.
  • ^ Davidson RL (1980). Handbook of Water-soluble Gums and Resins. McGraw Hill. ISBN 978-0-07-015471-1.
  • ^ a b cuisine, m. (2014). Xanthan Gum. Retrieved from modernist cuisine: "Xanthan Gum". 2012-11-27. Archived from the original on 2014-06-18. Retrieved 2014-06-21.
  • ^ "Oilfield Glossary - xanthan gum". www.glossary.oilfield.slb.com. Schlumberger. Archived from the original on 12 February 2017. Retrieved 30 April 2017.
  • ^ a b Kumar A, Rao KM, Han SS (January 2018). "Application of xanthan gum as polysaccharide in tissue engineering: A review". Carbohydrate Polymers. 180: 128–144. doi:10.1016/j.carbpol.2017.10.009. PMID 29103488.
  • ^ Ye A, Hemar Y, Singh H (August 2004). "Influence of polysaccharides on the rate of coalescence in oil-in-water emulsions formed with highly hydrolyzed whey proteins". Journal of Agricultural and Food Chemistry. 52 (17): 5491–5498. doi:10.1021/jf030762o. PMID 15315390.
  • ^ Bhatia M, Ahuja M, Mehta H (October 2015). "Thiol derivatization of Xanthan gum and its evaluation as a mucoadhesive polymer". Carbohydrate Polymers. 131: 119–124. doi:10.1016/j.carbpol.2015.05.049. PMID 26256167.
  • ^ Alhakamy NA, Naveen NR, Gorityala S, Kurakula M, Hosny KM, Safhi AY, et al. (August 2022). "Development of Novel S-Protective Thiolated-Based Mucoadhesive Tablets for Repaglinide: Pharmacokinetic Study". Polymers. 14 (17): 3529. doi:10.3390/polym14173529. PMC 9460926. PMID 36080604.
  • ^ Leichner C, Jelkmann M, Bernkop-Schnürch A (2019). "Thiolated polymers: Bioinspired polymers utilizing one of the most important bridging structures in nature". Advanced Drug Delivery Reviews. 151–152: 191–221. doi:10.1016/j.addr.2019.04.007. PMID 31028759. S2CID 135464452.
  • ^ Biroun MH, Haworth L, Abdolnezhad H, Khosravi A, Agrawal P, McHale G, et al. (April 2023). "Impact Dynamics of Non-Newtonian Droplets on Superhydrophobic Surfaces". Langmuir. 39 (16): 5793–5802. doi:10.1021/acs.langmuir.3c00043. PMC 10134492. PMID 37041655.
  • ^ Rubenzahl M. "Xanthan gum: Get past the weird and it's magical". Archived from the original on 2016-03-04. Retrieved 2016-01-02. Tests and measurements of xanthan gum
  • ^ a b c d e f Mortensen A, Aguilar F, Crebelli R, Di Domenico A, Frutos MJ, Galtier P, et al. (July 2017). "Re-evaluation of xanthan gum (E 415) as a food additive". EFSA Journal. 15 (7). European Food Safety Authority: e04909. doi:10.2903/j.efsa.2017.4909. PMC 7009887. PMID 32625570.
  • ^ García-Ochoa F, Santos VE, Casas JA, Gómez E (November 2000). "Xanthan gum: production, recovery, and properties". Biotechnology Advances. 18 (7): 549–579. doi:10.1016/S0734-9750(00)00050-1. PMID 14538095.
  • ^ Tortora GJ, Funke BR, Case CL (2010). Microbiology: An Introduction (10th ed.). San Francisco: Benjamin Cummings. p. 801.
  • ^ Becker A, Vorhölter FJ (2009). "Xanthan Biosynthesis by Xanthomonas Bacteria: An Overview of the Current Biochemical and Genomic Data". In Rehm BH (ed.). Microbial Production of Biopolymers and Polymer Precursors. Caister Academic Press. ISBN 978-1-904455-36-3.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Xanthan_gum&oldid=1234416941"

    Categories: 
    Edible thickening agents
    Food additives
    Natural gums
    Polysaccharides
    E-number additives
    Hidden categories: 
    CS1 German-language sources (de)
    CS1: long volume value
    Articles with short description
    Short description is different from Wikidata
    Chemicals that do not have a ChemSpider ID assigned
    Chemicals without a PubChem CID
    Articles without InChI source
    Articles without EBI source
    Articles without KEGG source
    ECHA InfoCard ID from Wikidata
    E number from Wikidata
    Articles containing unverified chemical infoboxes
    Chembox image size set
    All articles with unsourced statements
    Articles with unsourced statements from April 2017
     



    This page was last edited on 14 July 2024, at 07:08 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki