Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Uses  



1.1  Packed-bed fluidization design  





1.2  Bubble column design  





1.3  Spouted-bed minimum spouting velocity design  







2 See also  





3 References  














Archimedes number






العربية
Беларуская
Български
Bosanski
Català
Deutsch
Eesti
Español
Esperanto
فارسی
Français
Հայերեն
ि
Hrvatski
Italiano
Magyar
Nederlands


Polski
Português
Română
Русский
Simple English
Српски / srpski
Türkçe
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


In viscous fluid dynamics, the Archimedes number (Ar), is a dimensionless number used to determine the motion of fluids due to density differences, named after the ancient Greek scientist and mathematician Archimedes.

It is the ratio of gravitational forces to viscous forces[1] and has the form:[2]

where:

Uses

[edit]

The Archimedes number is generally used in design of tubular chemical process reactors. The following are non-exhaustive examples of using the Archimedes number in reactor design.

Packed-bed fluidization design

[edit]

The Archimedes number is applied often in the engineering of packed beds, which are very common in the chemical processing industry.[3] A packed bed reactor, which is similar to the ideal plug flow reactor model, involves packing a tubular reactor with a solid catalyst, then passing incompressibleorcompressible fluids through the solid bed.[3] When the solid particles are small, they may be "fluidized", so that they act as if they were a fluid. When fluidizing a packed bed, the pressure of the working fluid is increased until the pressure drop between the bottom of the bed (where fluid enters) and the top of the bed (where fluid leaves) is equal to the weight of the packed solids. At this point, the velocity of the fluid is just not enough to achieve fluidization, and extra pressure is required to overcome the friction of particles with each other and the wall of the reactor, allowing fluidization to occur. This gives a minimum fluidization velocity, , that may be estimated by:[2][4]

where:

Bubble column design

[edit]

Another use is in the estimation of gas holdup in a bubble column. In a bubble column, the gas holdup (fraction of a bubble column that is gas at a given time) can be estimated by:[5]

where:

Spouted-bed minimum spouting velocity design

[edit]

Aspouted bed is used in drying and coating. It involves spraying a liquid into a bed packed with the solid to be coated. A fluidizing gas fed from the bottom of the bed causes a spout, which causes the solids to circle linearly around the liquid.[6] Work has been undertaken to model the minimum velocity of gas required for spouting in a spouted bed, including the use of artificial neural networks. Testing with such models found that Archimedes number is a parameter that has a very large effect on the minimum spouting velocity.[7]

See also

[edit]

References

[edit]
  1. ^ Wypych, George (2014). Handbook of Solvents, Volume 2 - Use, Health, and Environment (2nd ed.). ChemTec Publishing. p. 657.
  • ^ a b c Harnby, N; Edwards, MF; Nienow, AW (1992). Mixing in the Process Industries (2nd ed.). Elsevier. p. 64.
  • ^ a b Nauman, E. Bruce (2008). Chemical Reactor Design, Optimization, and Scaleup (2nd ed.). John Wiley & Sons. p. 324.
  • ^ Önsan, Zeynep Ilsen; Avci, Ahmet Kerim (2016). Multiphase Catalytic Reactors - Theory, Design, Manufacturing, and Applications. John Wiley & Sons. p. 83.
  • ^ Feng, Dan; Ferrasse, Jean-Henry; Soric, Audrey; Boutin, Olivier (April 2019). "Bubble characterization and gas–liquid interfacial area in two phase gas–liquid system in bubble column at low Reynolds number and high temperature and pressure". Chem Eng Res Des. 144: 95–106. doi:10.1016/j.cherd.2019.02.001. S2CID 104422302.
  • ^ Yang, W-C (1998). Fluidization, Solids Handling, and Processing - Industrial Applications. William Andrew Publishing/Noyes. p. 335.
  • ^ Hosseini, SH; Rezaei, MJ; Bag-Mohammadi, M; Altzibar, H; Olazar, M (October 2018). "Smart models to predict the minimum spouting velocity of conical spouted beds with non-porous draft tube". Chem Eng Res Des. 138: 331–340. doi:10.1016/j.cherd.2018.08.034. S2CID 105461210.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Archimedes_number&oldid=1136157038"

    Categories: 
    Dimensionless numbers of fluid mechanics
    Fluid dynamics
     



    This page was last edited on 29 January 2023, at 00:49 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki