Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Experimental values  



1.1  Typical values  





1.2  Formula for the calculation of the Prandtl number of air and water  







2 Physical interpretation  





3 See also  





4 References  



4.1  General references  
















Prandtl number






Afrikaans
العربية

Български
Català
Čeština
Deutsch
Español
Euskara
فارسی
Français
Galego

Հայերեն
ि
Italiano
עברית
Lombard
Nederlands

Norsk nynorsk
Polski
Português
Русский
Slovenčina
Suomi

Türkçe
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


The Prandtl number (Pr) or Prandtl group is a dimensionless number, named after the German physicist Ludwig Prandtl, defined as the ratio of momentum diffusivitytothermal diffusivity.[1] The Prandtl number is given as:

where:

Note that whereas the Reynolds number and Grashof number are subscripted with a scale variable, the Prandtl number contains no such length scale and is dependent only on the fluid and the fluid state. The Prandtl number is often found in property tables alongside other properties such as viscosity and thermal conductivity.

The mass transfer analog of the Prandtl number is the Schmidt number and the ratio of the Prandtl number and the Schmidt number is the Lewis number.

Experimental values[edit]

Typical values[edit]

For most gases over a wide range of temperature and pressure, Pr is approximately constant. Therefore, it can be used to determine the thermal conductivity of gases at high temperatures, where it is difficult to measure experimentally due to the formation of convection currents.[1]

Typical values for Pr are:

Formula for the calculation of the Prandtl number of air and water[edit]

For air with a pressure of 1 bar, the Prandtl numbers in the temperature range between −100 °C and +500 °C can be calculated using the formula given below.[2] The temperature is to be used in the unit degree Celsius. The deviations are a maximum of 0.1% from the literature values.

The Prandtl numbers for water (1 bar) can be determined in the temperature range between 0 °C and 90 °C using the formula given below.[2] The temperature is to be used in the unit degree Celsius. The deviations are a maximum of 1% from the literature values.

Physical interpretation[edit]

Small values of the Prandtl number, Pr ≪ 1, means the thermal diffusivity dominates. Whereas with large values, Pr ≫ 1, the momentum diffusivity dominates the behavior. For example, the listed value for liquid mercury indicates that the heat conduction is more significant compared to convection, so thermal diffusivity is dominant. However, engine oil with its high viscosity and low heat conductivity, has a higher momentum diffusivity as compared to thermal diffusivity.[3]

The Prandtl numbers of gases are about 1, which indicates that both momentum and heat dissipate through the fluid at about the same rate. Heat diffuses very quickly in liquid metals (Pr ≪ 1) and very slowly in oils (Pr ≫ 1) relative to momentum. Consequently thermal boundary layer is much thicker for liquid metals and much thinner for oils relative to the velocity boundary layer.

In heat transfer problems, the Prandtl number controls the relative thickness of the momentum and thermal boundary layers. When Pr is small, it means that the heat diffuses quickly compared to the velocity (momentum). This means that for liquid metals the thermal boundary layer is much thicker than the velocity boundary layer.

In laminar boundary layers, the ratio of the thermal to momentum boundary layer thickness over a flat plate is well approximated by[4]

where is the thermal boundary layer thickness and is the momentum boundary layer thickness.

For incompressible flow over a flat plate, the two Nusselt number correlations are asymptotically correct:[4]

where is the Reynolds number. These two asymptotic solutions can be blended together using the concept of the Norm (mathematics):[4]

See also[edit]

References[edit]

  1. ^ a b c d e f g h i Coulson, J. M.; Richardson, J. F. (1999). Chemical Engineering Volume 1 (6th ed.). Elsevier. ISBN 978-0-7506-4444-0.
  • ^ a b tec-science (2020-05-10). "Prandtl number". tec-science. Retrieved 2020-06-25.
  • ^ Çengel, Yunus A. (2003). Heat transfer : a practical approach (2nd ed.). Boston: McGraw-Hill. ISBN 0072458933. OCLC 50192222.
  • ^ a b c Lienhard IV, John Henry; Lienhard V, John Henry (2017). A Heat Transfer Textbook (4th ed.). Cambridge, MA: Phlogiston Press.
  • General references[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Prandtl_number&oldid=1219584450"

    Categories: 
    Convection
    Dimensionless numbers of fluid mechanics
    Dimensionless numbers of thermodynamics
    Fluid dynamics
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Articles needing additional references from August 2014
    All articles needing additional references
    Articles with GND identifiers
     



    This page was last edited on 18 April 2024, at 16:42 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki