Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Protostars  





2 Occurrence  





3 Galactic outflow  





4 See also  





5 References  





6 External links  














Bipolar outflow






فارسی
Français
Italiano
Norsk bokmål
Русский

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


The Boomerang Nebula is an excellent example of a bipolar outflow. Image credit: NASA, STScI.

Abipolar outflow comprises two continuous flows of gas from the poles of a star. Bipolar outflows may be associated with protostars (young, forming stars), or with evolved post-AGB stars (often in the form of bipolar nebulae).

Protostars[edit]

In the case of a young star, the bipolar outflow is driven by a dense, collimated jet.[1] These astrophysical jets are narrower than the outflow and very difficult to observe directly. However, supersonic shock fronts along the jet heat the gas in and around the jet to thousands of degrees. These pockets of hot gas radiate at infrared wavelengths and thus can be detected with telescopes like the United Kingdom Infrared Telescope (UKIRT). They often appear as discrete knots or arcs along the beam of the jet. They are usually called molecular bow shocks, since the knots are usually curved like the bow wave at the front of a ship.

Occurrence[edit]

Typically, molecular bow shocks are observed in ro-vibrational emission from hot molecular hydrogen. These objects are known as molecular hydrogen emission-line objects, or MHOs.

Bipolar outflows are usually observed in emission from warm carbon monoxide molecules with millimeter-wave telescopes like the James Clerk Maxwell Telescope, though other trace molecules can be used. Bipolar outflows are often found in dense, dark clouds. They tend to be associated with the very youngest stars (ages less than 10,000 years) and are closely related to the molecular bow shocks. Indeed, the bow shocks are thought to sweep up or "entrain" dense gas from the surrounding cloud to form the bipolar outflow.[2]

Jets from more evolved young stars - T Tauri stars - produce similar bow shocks, though these are visible at optical wavelengths and are called Herbig–Haro objects (HH objects). T Tauri stars are usually found in less dense environments. The absence of surrounding gas and dust means that HH objects are less effective at entraining molecular gas. Consequently, they are less likely to be associated with visible bipolar outflows.

The presence of a bipolar outflow shows that the central star is still accumulating material from the surrounding cloud via an accretion disk. The outflow relieves the build-up of angular momentum as material spirals down onto the central star through the accretion disk. The magnetised material in these protoplanetary jets is rotating and comes from a wide area in the protostellar disk.[1]

Bipolar outflows are also ejected from evolved stars, such as proto-planetary nebulae, planetary nebulae, and post-AGB stars. Direct imaging of proto-planetary nebulae and planetary nebulae has shown the presence of outflows ejected by these systems.[2][3] Large spectroscopic radial velocity monitoring campaigns have revealed the presence of high-velocity outflows or jets from post-AGB stars.[4][5][6] The origin of these jets is the presence of a binary companion, where mass-transfer and accretion onto one of the stars lead to the creation of an accretion disk, from which matter is ejected. The presence of a magnetic field causes the eventual ejection and collimation of the matter, forming a bipolar outflow or jet.

In both cases, bipolar outflows consist largely of molecular gas. They can travel at tens or possibly even hundreds of kilometers per second, and in the case of young stars extend over a parsec in length.

Galactic outflow[edit]

Massive galactic molecular outflows may have the physical conditions such as high gas densities to form stars. This star-formation mode could contribute to the morphological evolution of galaxies.[7]

Infrared image of a bipolar outflow. The outflow is driven by a massive young star that was first identified as a radio source and catalogued "DR 21". The outflow itself is known as the DR21 outflow, or MHO 898/899. Image credit: Chris Davis, UKIRT/Joint Astronomy Centre

See also[edit]

References[edit]

  1. ^ Pudritz, Ralph E.; Ray, Tom P. (2019). "The Role of Magnetic Fields in Protostellar Outflows and Star Formation". Frontiers in Astronomy and Space Sciences. 6: 54. arXiv:1912.05605. Bibcode:2019FrASS...6...54P. doi:10.3389/fspas.2019.00054. ISSN 2296-987X.
  • ^ Sahai, R.; Zijlstra, A.; Sánchez Contreras, C.; Morris, M. (2003-03-01). "An Icy, Bipolar Proto-Planetary Nebula with Knotty Jets: IRAS 22036+5306". The Astrophysical Journal Letters. 586 (1): L81–L85. Bibcode:2003ApJ...586L..81S. doi:10.1086/374582. ISSN 0004-637X.
  • ^ Livio, Mario (2000). "Jets in Planetary Nebulae". Asymmetrical Planetary Nebulae II: From Origins to Microstructures. 199: 243. Bibcode:2000ASPC..199..243L.
  • ^ Gorlova, N.; Van Winckel, H.; Jorissen, A. (2012-01-01). "Mass Transfer in Two Post-AGB Binaries with Dusty Disks". Open Astronomy. 21 (1–2): 165. Bibcode:2012BaltA..21..165G. doi:10.1515/astro-2017-0371. ISSN 2543-6376.
  • ^ Gorlova, N.; Van Winckel, H.; Ikonnikova, N. P.; Burlak, M. A.; Komissarova, G. V.; Jorissen, A.; Gielen, C.; Debosscher, J.; Degroote, P. (2015-06-12). "IRAS 19135+3937: an SRd variable as interacting binary surrounded by a circumbinary disc". Monthly Notices of the Royal Astronomical Society. 451 (3): 2462–2478. arXiv:1505.04264. Bibcode:2015MNRAS.451.2462G. doi:10.1093/mnras/stv1111. ISSN 1365-2966.
  • ^ Bollen, Dylan; Van Winckel, Hans; Kamath, Devika (November 2017). "Jet creation in post-AGB binaries: the circum-companion accretion disk around BD+46°442". Astronomy & Astrophysics. 607: A60. arXiv:1708.00202. Bibcode:2017A&A...607A..60B. doi:10.1051/0004-6361/201731493. ISSN 0004-6361. S2CID 119268057.
  • ^ Maiolino, R.; Russell, H. R.; Fabian, A. C.; et al. (2017). "Star formation inside a galactic outflow". Nature. 544 (7649): 202–206. arXiv:1703.08587. Bibcode:2017Natur.544..202M. doi:10.1038/nature21677. ISSN 0028-0836. PMID 28346938. S2CID 4456916.
    1. ^ Reipurth B., Bally J. (2001), "Herbig–Haro flows: probes of early stellar evolution", Annual Review of Astronomy and Astrophysics, vol. 39, p. 403-455
    2. ^ Davis C. J., Eisloeffel J. (1995), "Near-infrared imaging in H2 of molecular (CO) outflows from young stars", Astronomy and Astrophysics, vol. 300, p. 851-869.
    3. ^ Kwok S. (2000), The origin and evolution of Planetary Nebulae, Cambridge Astrophysics Series, Cambridge University Press.
    4. ^ Chen Z., Frank A., Blackman E. G., Nordhaus J. and Carroll-Nellenback J., (2017), "Mass Transfer and Disc Formation in AGB Binary systems", Monthly Notices of the Royal Astronomical Society, https://doi.org/10.1093/mnras/stx680

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Bipolar_outflow&oldid=1235071680"

    Category: 
    Stellar astronomy
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Commons category link is on Wikidata
     



    This page was last edited on 17 July 2024, at 15:09 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki