Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Red giants  





2 Echelle diagrams  





3 Scaling relations  





4 Some bright solar-like oscillators  





5 See also  





6 References  





7 External links  














Solar-like oscillations






العربية
Català
Español
Português
Română
Русский
Українська
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Solar-like oscillations are oscillationsinstars that are excited in the same way as those in the Sun, namely by turbulent convection in its outer layers. Stars that show solar-like oscillations are called solar-like oscillators. The oscillations are standing pressure and mixed pressure-gravity modes that are excited over a range in frequency, with the amplitudes roughly following a bell-shaped distribution. Unlike opacity-driven oscillators, all the modes in the frequency range are excited, making the oscillations relatively easy to identify. The surface convection also damps the modes, and each is well-approximated in frequency space by a Lorentzian curve, the width of which corresponds to the lifetime of the mode: the faster it decays, the broader is the Lorentzian. All stars with surface convection zones are expected to show solar-like oscillations, including cool main-sequence stars (up to surface temperatures of about 7000K), subgiants and red giants. Because of the small amplitudes of the oscillations, their study has advanced tremendously thanks to space-based missions[1] (mainly COROT and Kepler).

Solar-like oscillations have been used, among other things, to precisely determine the masses and radii of planet-hosting stars and thus improve the measurements of the planets' masses and radii.[2][3]

Red giants

[edit]

In red giants, mixed modes are observed, which are in part directly sensitive to the core properties of the star. These have been used to distinguish red giants burning helium in their cores from those that are still only burning hydrogen in a shell,[4] to show that the cores of red giants are rotating more slowly than models predict[5] and to constrain the internal magnetic fields of the cores[6]

Echelle diagrams

[edit]
An echelle diagram for the Sun, using data for low-angular-degree modes from the Birmingham Solar Oscillations Network (BiSON).[7][8] Modes of the same angular degree form roughly vertical lines at high frequencies, as expected from the asymptotic behaviour of the mode frequencies.

The peak of the oscillation power roughly corresponds to lower frequencies and radial orders for larger stars. For the Sun, the highest amplitude modes occur around a frequency of 3 mHz with order , and no mixed modes are observed. For more massive and more evolved stars, the modes are of lower radial order and overall lower frequencies. Mixed modes can be seen in the evolved stars. In principle, such mixed modes may also be present in main-sequence stars but they are at too low frequency to be excited to observable amplitudes. High-order pressure modes of a given angular degree are expected to be roughly evenly-spaced in frequency, with a characteristic spacing known as the large separation .[9] This motivates the echelle diagram, in which the mode frequencies are plotted as a function of the frequency modulo the large separation, and modes of a particular angular degree form roughly vertical ridges.

Scaling relations

[edit]

The frequency of maximum oscillation power is accepted[10] to vary roughly with the acoustic cut-off frequency, above which waves can propagate in the stellar atmosphere, and thus are not trapped and do not contribute to standing modes. This gives

Similarly, the large frequency separation is known to be roughly proportional to the square root of the density:

When combined with an estimate of the effective temperature, this allows one to solve directly for the mass and radius of the star, basing the constants of proportionality on the known values for the Sun. These are known as the scaling relations:

Equivalently, if one knows the star's luminosity, then the temperature can be replaced via the blackbody luminosity relationship , which gives

Some bright solar-like oscillators

[edit]

See also

[edit]

References

[edit]
  1. ^ Chaplin, W. J.; Miglio, A. (2013). "Asteroseismology of Solar-Type and Red-Giant Stars". Annual Review of Astronomy and Astrophysics. 51 (1): 353–392. arXiv:1303.1957. Bibcode:2013ARA&A..51..353C. doi:10.1146/annurev-astro-082812-140938. S2CID 119222611.
  • ^ Davies, G. R.; et al. (2016). "Oscillation frequencies for 35 Kepler solar-type planet-hosting stars using Bayesian techniques and machine learning". Monthly Notices of the Royal Astronomical Society. 456 (2): 2183–2195. arXiv:1511.02105. Bibcode:2016MNRAS.456.2183D. doi:10.1093/mnras/stv2593.
  • ^ Silva Aguirre, V.; et al. (2015). "Ages and fundamental properties of Kepler exoplanet host stars from asteroseismology". Monthly Notices of the Royal Astronomical Society. 452 (2): 2127–2148. arXiv:1504.07992. Bibcode:2015MNRAS.452.2127S. doi:10.1093/mnras/stv1388.
  • ^ Bedding, Timothy R.; et al. (2011). "Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars". Nature. 471 (7340): 608–11. arXiv:1103.5805. Bibcode:2011Natur.471..608B. doi:10.1038/nature09935. PMID 21455175. S2CID 4338871.
  • ^ Beck, Paul G.; et al. (2012). "Fast core rotation in red-giant stars as revealed by gravity-dominated mixed modes". Nature. 481 (7379): 55–7. arXiv:1112.2825. Bibcode:2012Natur.481...55B. doi:10.1038/nature10612. PMID 22158105. S2CID 4310747.
  • ^ Fuller, J.; Cantiello, M.; Stello, D.; Garcia, R. A.; Bildsten, L. (2015). "Asteroseismology can reveal strong internal magnetic fields in red giant stars". Science. 350 (6259): 423–426. arXiv:1510.06960. Bibcode:2015Sci...350..423F. doi:10.1126/science.aac6933. PMID 26494754. S2CID 17161151.
  • ^ Broomhall, A.-M.; et al. (2009). "Definitive Sun-as-a-star p-mode frequencies: 23 years of BiSON observations". Monthly Notices of the Royal Astronomical Society. 396 (1): L100–L104. arXiv:0903.5219. Bibcode:2009MNRAS.396L.100B. doi:10.1111/j.1745-3933.2009.00672.x. S2CID 18297150.
  • ^ Davies, G. R.; Chaplin, W. J.; Elsworth, Y.; Hale, S. J. (2014). "BiSON data preparation: a correction for differential extinction and the weighted averaging of contemporaneous data". Monthly Notices of the Royal Astronomical Society. 441 (4): 3009–3017. arXiv:1405.0160. Bibcode:2014MNRAS.441.3009D. doi:10.1093/mnras/stu803.
  • ^ Tassoul, M. (1980). "Asymptotic approximations for stellar nonradial pulsations". The Astrophysical Journal Supplement Series. 43: 469. Bibcode:1980ApJS...43..469T. doi:10.1086/190678.
  • ^ Kjeldsen, H.; Bedding, T. R. (1995). "Amplitudes of stellar oscillations: the implications for asteroseismology". Astronomy and Astrophysics. 293: 87. arXiv:astro-ph/9403015. Bibcode:1995A&A...293...87K.
  • [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Solar-like_oscillations&oldid=1235336757"

    Categories: 
    Variable stars
    Asteroseismology
     



    This page was last edited on 18 July 2024, at 19:43 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki