Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Classification  





2 Substellar companion  





3 See also  





4 References  





5 External links  














Substellar object






العربية
Español
فارسی
Français

Հայերեն
ि
Bahasa Indonesia
Italiano
עברית


Português
Русский
Suomi

Українська
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Asubstellar object, sometimes called a substar, is an astronomical object, the mass of which is smaller than the smallest mass at which hydrogen fusion can be sustained (approximately 0.08 solar masses). This definition includes brown dwarfs and former stars similar to EF Eridani B, and can also include objects of planetary mass, regardless of their formation mechanism and whether or not they are associated with a primary star.[1][2][3][4]

Assuming that a substellar object has a composition similar to the Sun's and at least the mass of Jupiter (approximately 0.001 solar masses), its radius will be comparable to that of Jupiter (approximately 0.1 solar radii) regardless of the mass of the substellar object (brown dwarfs are less than 75 Jupiter masses). This is because the center of such a substellar object at the top range of the mass (just below the hydrogen-burning limit) is quite degenerate, with a density of ≈103 g/cm3, but this degeneracy lessens with decreasing mass until, at the mass of Jupiter, a substellar object has a central density less than 10 g/cm3. The density decrease balances the mass decrease, keeping the radius approximately constant.[5]

Substellar objects like brown dwarfs do not have enough mass to fuse hydrogen and helium, hence do not undergo the usual stellar evolution that limits the lifetime of stars.

A substellar object with a mass just below the hydrogen-fusing limit may ignite hydrogen fusion temporarily at its center. Although this will provide some energy, it will not be enough to overcome the object's ongoing gravitational contraction. Likewise, although an object with mass above approximately 0.013 solar masses will be able to fuse deuterium for a time, this source of energy will be exhausted in approximately 1–100 million years. Apart from these sources, the radiation of an isolated substellar object comes only from the release of its gravitational potential energy, which causes it to gradually cool and shrink. A substellar object in orbit around a star will shrink more slowly as it is kept warm by the star, evolving towards an equilibrium state where it emits as much energy as it receives from the star.[6]

Substellar objects are cool enough to have water vapor in their atmosphere. Infrared spectroscopy can detect the distinctive color of wateringas giant size substellar objects, even if they are not in orbit around a star.[7]

Classification

[edit]

William Duncan MacMillan proposed in 1918 the classification of substellar objects into three categories based on their density and phase state: solid, transitional and dark (non-stellar) gaseous.[8] Solid objects include Earth, smaller terrestrial planets and moons; with Uranus and Neptune (as well as later mini-Neptune and Super Earth planets) as transitional objects between solid and gaseous. Saturn, Jupiter and large gas giant planets are in a fully "gaseous" state.

Substellar companion

[edit]
Earth and space bound observatories observe Gliese 229 and its companion, which is perhaps 20–40 Jupiter masses in size[9]

A substellar object may be a companion of a star,[9] such as an exoplanetorbrown dwarf that is orbiting a star.[10] Objects as low as 8–23 Jupiter masses have been called substellar companions.[11]

Objects orbiting a star are often called planets below 13 Jupiter masses and brown dwarves above that.[12] Companions at that planet-brown dwarf borderline have been called Super-Jupiters, such as that around the star Kappa Andromedae.[13] Nevertheless, objects as small as 8 Jupiter masses have been called brown dwarves.[14]

A substellar companion is thought to exist in the binary star system SDSS 1212.[15] Substellar companions have been confirmed by analyzing astrometric data from Hipparcos.[16]

See also

[edit]
  • List of planet types
  • Planet
  • Red dwarf
  • Sub-brown dwarf
  • References

    [edit]
    1. ^ §3, What Is a Planet?, Steven Soter, Astronomical Journal, 132, #6 (December 2006), pp. 2513–2519.
  • ^ Chabrier and Baraffe, pp. 337–338
  • ^ Alula Australis Archived 2006-08-24 at the Wayback Machine, Jim Kaler, in Stars, a collection of web pages. Accessed on line September 17, 2007.
  • ^ A search for substellar members in the Praesepe and σ Orionis clusters, B. M. González-García, M. R. Zapatero Osorio, V. J. S. Béjar, G. Bihain, D. Barrado Y Navascués, J. A. Caballero, and M. Morales-Calderón, Astronomy and Astrophysics 460, #3 (December 2006), pp. 799–810.
  • ^ Chabrier and Baraffe, §2.1.1, 3.1, Figure 3
  • ^ Chabrier and Baraffe, §4.1, Figures 6–8
  • ^ Hille, Karl (2018-01-11). "Hubble Finds Substellar Objects in the Orion Nebula". NASA. Retrieved 2018-01-30.
  • ^ MacMillan, W. D. (July 1918). "On stellar evolution". Astrophysical Journal. 48: 35–49. Bibcode:1918ApJ....48...35M. doi:10.1086/142412.
  • ^ a b STScI-1995-48
  • ^ Mugrauer, M., et al - Direct detection of a substellar companion to the young nearby star PZ Telescopii (2010)
  • ^ S. Geier, et al - Discovery of a Close Substellar Companion to the Hot Subdwarf Star HD 149382 (2009)
  • ^ Boss, A. P.; Basri, Gibor; Kumar, Shiv S.; Liebert, James; Martín, Eduardo L.; Reipurth, B.; "Nomenclature: Brown Dwarfs, Gas Giant Planets, and ?", in Brown Dwarfs, Proceedings of IAU Symposium #211, held 20–24 May 2002 at University of Hawaii, Honolulu
  • ^ Astronomers Directly Image Massive Star's 'Super-Jupiter'11.19.12
  • ^ Discovery of a Planetary-Mass Brown Dwarf with a Circumstellar Disk, Luhman, et al., 2005
  • ^ Detection of Substellar Companion in Interacting Binary
  • ^ Sabine Reffert, Andreas Quirrenbach - Mass constraints on substellar companion candidates from the re-reduced Hipparcos intermediate astrometric data: Nine confirmed planets and two confirmed brown dwarfs (2011)
  • [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Substellar_object&oldid=1224143056"

    Categories: 
    Substellar objects
    Planets
    Stars
    Hidden categories: 
    Webarchive template wayback links
    Articles with short description
    Short description is different from Wikidata
    Commons category link is on Wikidata
     



    This page was last edited on 16 May 2024, at 14:14 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki