Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition  





2 Properties of classical Wiener space  



2.1  Uniform topology  





2.2  Separability and completeness  





2.3  Tightness in classical Wiener space  





2.4  Classical Wiener measure  







3 See also  





4 References  














Classical Wiener space






Deutsch
Français
Português
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Norbert Wiener

Inmathematics, classical Wiener space is the collection of all continuous functions on a given domain (usually a subinterval of the real line), taking values in a metric space (usually n-dimensional Euclidean space). Classical Wiener space is useful in the study of stochastic processes whose sample paths are continuous functions. It is named after the American mathematician Norbert Wiener.

Definition[edit]

Consider ERn and a metric space (M, d). The classical Wiener space C(E; M) is the space of all continuous functions f : EM. I.e. for every fixed tinE,

as

In almost all applications, one takes E = [0, T ] or [0, +∞) and M = Rn for some ninN. For brevity, write C for C([0, T ]; Rn); this is a vector space. Write C0 for the linear subspace consisting only of those functions that take the value zero at the infimum of the set E. Many authors refer to C0 as "classical Wiener space".

For a stochastic process and the space of all functions from to, one looks at the map . One can then define the coordinate mapsorcanonical versions defined by . The form another process. The Wiener measure is then the unique measure on such that the coordinate process is a Brownian motion.[1]

Properties of classical Wiener space[edit]

Uniform topology[edit]

The vector space C can be equipped with the uniform norm

turning it into a normed vector space (in fact a Banach space). This norm induces a metriconC in the usual way: . The topology generated by the open sets in this metric is the topology of uniform convergence on [0, T ], or the uniform topology.

Thinking of the domain [0, T ] as "time" and the range Rn as "space", an intuitive view of the uniform topology is that two functions are "close" if we can "wiggle space slightly" and get the graph of f to lie on top of the graph of g, while leaving time fixed. Contrast this with the Skorokhod topology, which allows us to "wiggle" both space and time.

Separability and completeness[edit]

With respect to the uniform metric, C is both a separable and a complete space:

Since it is both separable and complete, C is a Polish space.

Tightness in classical Wiener space[edit]

Recall that the modulus of continuity for a function f : [0, T ] → Rn is defined by

This definition makes sense even if f is not continuous, and it can be shown that f is continuous if and only if its modulus of continuity tends to zero as δ → 0:

.

By an application of the Arzelà-Ascoli theorem, one can show that a sequence ofprobability measures on classical Wiener space Cistight if and only if both the following conditions are met:

and
for all ε > 0.

Classical Wiener measure[edit]

There is a "standard" measure on C0, known as classical Wiener measure (or simply Wiener measure). Wiener measure has (at least) two equivalent characterizations:

If one defines Brownian motion to be a Markov stochastic process B : [0, T ] × Ω → Rn, starting at the origin, with almost surely continuous paths and independent increments

then classical Wiener measure γ is the law of the process B.

Alternatively, one may use the abstract Wiener space construction, in which classical Wiener measure γ is the radonification of the canonical Gaussian cylinder set measure on the Cameron-Martin Hilbert space corresponding to C0.

Classical Wiener measure is a Gaussian measure: in particular, it is a strictly positive probability measure.

Given classical Wiener measure γ on C0, the product measure γn × γ is a probability measure on C, where γn denotes the standard Gaussian measureonRn.

See also[edit]

References[edit]

  1. ^ Revuz, Daniel; Yor, Marc (1999). Continuous Martingales and Brownian Motion. Grundlehren der mathematischen Wissenschaften. Vol. 293. Springer. pp. 33–37.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Classical_Wiener_space&oldid=1146850321"

Categories: 
Measure theory
Metric geometry
Stochastic processes
Hidden categories: 
Articles needing expert attention with no reason or talk parameter
Articles needing expert attention from February 2023
All articles needing expert attention
Mathematics articles needing expert attention
Articles needing additional references from February 2023
All articles needing additional references
Articles with multiple maintenance issues
 



This page was last edited on 27 March 2023, at 09:34 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki