Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Power management  





2 Sources  



2.1  Reduction  







3 Clock frequencies and multi-core chip designs  





4 Processor overheating  





5 See also  





6 References  





7 Further reading  





8 External links  














Processor power dissipation






العربية
Deutsch
فارسی
Français
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from CPU power dissipation)

Photos of heatsinks

Processor power dissipationorprocessing unit power dissipation is the process in which computer processors consume electrical energy, and dissipate this energy in the form of heat due to the resistance in the electronic circuits.

Power management

[edit]

Designing CPUs that perform tasks efficiently without overheating is a major consideration of nearly all CPU manufacturers to date. Historically, early CPUs implemented with vacuum tubes consumed power on the order of many kilowatts. Current CPUs in general-purpose personal computers, such as desktops and laptops, consume power in the order of tens to hundreds of watts. Some other CPU implementations use very little power; for example, the CPUs in mobile phones often use just a few watts of electricity,[1] while some microcontrollers used in embedded systems may consume only a few milliwatts or even as little as a few microwatts.

There are a number of engineering reasons for this pattern:

Processor manufacturers usually release two power consumption numbers for a CPU:

For example, the Pentium 4 2.8 GHz has a 68.4 W typical thermal power and 85 W maximum thermal power. When the CPU is idle, it will draw far less than the typical thermal power. Datasheets normally contain the thermal design power (TDP), which is the maximum amount of heat generated by the CPU, which the cooling system in a computer is required to dissipate. Both Intel and Advanced Micro Devices (AMD) have defined TDP as the maximum heat generation for thermally significant periods, while running worst-case non-synthetic workloads; thus, TDP is not reflecting the actual maximum power of the processor. This ensures the computer will be able to handle essentially all applications without exceeding its thermal envelope, or requiring a cooling system for the maximum theoretical power (which would cost more but in favor of extra headroom for processing power).[3][4]

In many applications, the CPU and other components are idle much of the time, so idle power contributes significantly to overall system power usage. When the CPU uses power management features to reduce energy use, other components, such as the motherboard and chipset, take up a larger proportion of the computer's energy. In applications where the computer is often heavily loaded, such as scientific computing, performance per watt (how much computing the CPU does per unit of energy) becomes more significant.

CPUs typically use a significant portion of the power consumed by the computer. Other major uses include fast video cards, which contain graphics processing units, and power supplies. In laptops, the LCD's backlight also uses a significant portion of overall power. While energy-saving features have been instituted in personal computers for when they are idle, the overall consumption of today's high-performance CPUs is considerable. This is in strong contrast with the much lower energy consumption of CPUs designed for low-power devices.

Sources

[edit]

There are several factors contributing to the CPU power consumption; they include dynamic power consumption, short-circuit power consumption, and power loss due to transistor leakage currents:

The dynamic power consumption originates from the activity of logic gates inside a CPU. When the logic gates toggle, energy is flowing as the capacitors inside them are charged and discharged. The dynamic power consumed by a CPU is approximately proportional to the CPU frequency, and to the square of the CPU voltage:[5]

where C is the switched load capacitance, f is frequency, V is voltage.[6]

When logic gates toggle, some transistors inside may change states. As this takes a finite amount of time, it may happen that for a very brief amount of time some transistors are conducting simultaneously. A direct path between the source and ground then results in some short-circuit power loss (). The magnitude of this power is dependent on the logic gate, and is rather complex to model on a macro level.

Power consumption due to leakage power () emanates at a micro-level in transistors. Small amounts of currents are always flowing between the differently doped parts of the transistor. The magnitude of these currents depend on the state of the transistor, its dimensions, physical properties and sometimes temperature. The total amount of leakage currents tends to inflate for increasing temperature and decreasing transistor sizes.

Both dynamic and short-circuit power consumption are dependent on the clock frequency, while the leakage current is dependent on the CPU supply voltage. It has been shown that the energy consumption of a program shows convex energy behavior, meaning that there exists an optimal CPU frequency at which energy consumption is minimal for the work done.[7]

Reduction

[edit]

Power consumption can be reduced in several ways,[citation needed] including the following:

Clock frequencies and multi-core chip designs

[edit]

Historically, processor manufacturers consistently delivered increases in clock rates and instruction-level parallelism, so that single-threaded code executed faster on newer processors with no modification.[12] More recently, in order to manage CPU power dissipation, processor makers favor multi-core chip designs, thus software needs to be written in a multi-threaded or multi-process manner to take full advantage of such hardware. Many multi-threaded development paradigms introduce overhead, and will not see a linear increase in speed when compared to the number of processors. This is particularly true while accessing shared or dependent resources, due to lock contention. This effect becomes more noticeable as the number of processors increases.

Recently, IBM has been exploring ways to distribute computing power more efficiently by mimicking the distributional properties of the human brain.[13]

Processor overheating

[edit]

Processors can be damaged from overheating, but vendors protect processors with operational safeguards such as throttling and automatic shutdown. When a core exceeds the set throttle temperature, processors can reduce power to maintain a safe temperature level and if the processor is unable to maintain a safe operating temperature through throttling actions, it will automatically shut down to prevent permanent damage.[14]

See also

[edit]
  • Advanced Configuration and Power Interface (ACPI)
  • Glitch removal
  • Green computing
  • IT energy management
  • Low-power electronics
  • Moore's law
  • Overclocking
  • Performance per watt
  • Power analysis
  • Dissipation
  • PowerTOP
  • References

    [edit]
    1. ^ Zhang, Yifan; Liu, Yunxin; Zhuang, Li; Liu, Xuanzhe; Zhao, Feng; Li, Qun. Accurate CPU Power Modeling for Multicore Smartphones (Report). Microsoft Research. MSR-TR-2015-9.
  • ^ Cutress, Ian (2012-04-23). "Undervolting and Overclocking on Ivy Bridge". anandtech.com.
  • ^ Chin, Mike (2004-06-15). "Athlon 64 for Quiet Power". silentpcreview.com. p. 3. Retrieved 2013-12-21. Thermal Design Power (TDP) should be used for processor thermal solution design targets. The TDP is not the maximum power that the processor can dissipate.
  • ^ Cunningham, Andrew (2013-01-14). "The technical details behind Intel's 7 Watt Ivy Bridge CPUs". Ars Technica. Retrieved 2013-01-14. In Intel's case, a specified chip's TDP has less to do with the amount of power a chip needs to use (or can use) and more to do with the amount of power the computer's fan and heatsink need to be able to dissipate while the chip is under sustained load. Actual power usage can be higher or (much) lower than TDP, but the figure is intended to give guidance to engineers designing cooling solutions for their products.
  • ^ "Enhanced Intel SpeedStep Technology for the Intel Pentium M Processor (White Paper)" (PDF). Intel Corporation. March 2004. Archived (PDF) from the original on 2015-08-12. Retrieved 2013-12-21.
  • ^ Jan M. Rabaey; Massoud Pedram; editors. "Low Power Design Methodologies". 2012. p. 133.
  • ^ De Vogeleer, Karel; Memmi, Gerard; Jouvelot, Pierre; Coelho, Fabien (2013-09-09). "The Energy/Frequency Convexity Rule: Modeling and Experimental Validation on Mobile Devices". arXiv:1401.4655 [cs.OH].
  • ^ Su, Ching-Long; Tsui, Chi-Ying; Despain, Alvin M. (1994). Low Power Architecture Design and Compilation Techniques for High-Performance Processors (PDF) (Report). Advanced Computer Architecture Laboratory. ACAL-TR-94-01.
  • ^ Basu, K.; Choudhary, A.; Pisharath, J.; Kandemir, M. (2002). "Power protocol: Reducing power dissipation on off-chip data buses". 35th Annual IEEE/ACM International Symposium on Microarchitecture, 2002. (MICRO-35). Proceedings (PDF). pp. 345–355. CiteSeerX 10.1.1.115.9946. doi:10.1109/MICRO.2002.1176262. ISBN 978-0-7695-1859-6. S2CID 18811466.
  • ^ K. Moiseev, A. Kolodny and S. Wimer (September 2008). "Timing-aware power-optimal ordering of signals". ACM Transactions on Design Automation of Electronic Systems. 13 (4): 1–17. doi:10.1145/1391962.1391973. S2CID 18895687.
  • ^ Al-Khatib, Zaid; Abdi, Samar (2015-04-13). "Operand-Value-Based Modeling of Dynamic Energy Consumption of Soft Processors in FPGA". Applied Reconfigurable Computing. Lecture Notes in Computer Science. Vol. 9040. Springer, Cham. pp. 65–76. doi:10.1007/978-3-319-16214-0_6. ISBN 978-3-319-16213-3.
  • ^ Sutter, Herb (2005). "The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software". Dr. Dobb's Journal. 30 (3).
  • ^ Johnson, R. Colin (2011-08-18). "IBM demos cognitive computer chips". EE Times. Retrieved 2011-10-01.
  • ^ "Frequently Asked Questions About Temperature for Intel® Processors".
  • Further reading

    [edit]
    [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Processor_power_dissipation&oldid=1218345237"

    Categories: 
    Central processing unit
    Electric power
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from March 2019
    CS1 errors: missing periodical
     



    This page was last edited on 11 April 2024, at 04:53 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki