Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Details  





2 See also  





3 References  





4 Further reading  














Clock gating






Català
Deutsch
فارسی
Français

Italiano
עברית
Русский
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Incomputer architecture, clock gating is a popular power management technique used in many synchronous circuits for reducing dynamic power dissipation, by removing the clock signal when the circuit, or a subpart of it, is not in use or ignores clock signal. Clock gating saves power by pruning the clock tree, at the cost of adding more logic to a circuit. Pruning the clock disables portions of the circuitry so that the flip-flops in them do not switch state, as switching the state consumes power. When not being switched, the switching power consumption goes to zero, and only leakage currents are incurred.[1]

Although asynchronous circuits by definition do not have a global "clock", the term perfect clock gating is used to illustrate how various clock gating techniques are simply approximations of the data-dependent behavior exhibited by asynchronous circuitry. As the granularity on which one gates the clock of a synchronous circuit approaches zero, the power consumption of that circuit approaches that of an asynchronous circuit: the circuit only generates logic transitions when it is actively computing.[2]

Details[edit]

An alternative solution to clock gating is to use Clock Enable (CE) logic on synchronous data path employing the input multiplexer, e.g., for D type flip-flops: using C / Verilog language notation: Dff= CE? D: Q; where: Dff is D-input of D-type flip-flop, D is module information input (without CE input), Q is D-type flip-flop output. This type of clock gating is race condition free and is preferred for FPGA designs. For FPGAs every D-type flip-flop has an additional CE input signal.

Clock gating works by taking the enable conditions attached to registers, and uses them to gate the clocks. A design must contain these enable conditions in order to use and benefit from clock gating. This clock gating process can also save significant die area as well as power, since it removes large numbers of muxes and replaces them with clock gating logic. This clock gating logic is generally in the form of "integrated clock gating" (ICG) cells. However, the clock gating logic will change the clock tree structure, since the clock gating logic will sit in the clock tree.

Clock gating example

Clock gating logic can be added into a design in a variety of ways:

  1. Coded into the register transfer level (RTL) code as enable conditions that can be automatically translated into clock gating logic by synthesis tools (fine grain clock gating).
  2. Inserted into the design manually by the RTL designers (typically as module level clock gating) by instantiating library specific integrated clock gating (ICG) cells to gate the clocks of specific modules or registers.
  3. Semi-automatically inserted into the RTL by automated clock gating tools. These tools either insert ICG cells into the RTL, or add enable conditions into the RTL code. These typically also offer sequential clock gating optimisations.

In general, clock gating applied at a coarser granularity leads to reduced resource overhead and greater power savings. [3]

Any RTL modifications to improve clock gating will result in functional changes to the design (since the registers will now hold different values) which need to be verified.

Sequential clock gating is the process of extracting/propagating the enable conditions to the upstream/downstream sequential elements, so that additional registers can be clock gated.

Chips intended to run on batteries or with very low power such as those used in the mobile phones, wearable devices, etc. would implement several forms of clock gating together. At one end is the manual gating of clocks by software, where a driver enables or disables the various clocks used by a given idle controller. On the other end is automatic clock gating, where the hardware can be told to detect whether there's any work to do, and turn off a given clock if it is not needed. These forms interact with each other and may be part of the same enable tree. For example, an internal bridge or bus might use automatic gating so that it is gated off until the CPU or a DMA engine needs to use it, while several of the peripherals on that bus might be permanently gated off if they are unused on that board.

See also[edit]

References[edit]

  1. ^ Panda, Preeti Ranjan; Shrivastava, Aviral; v. n. Silpa, B.; Gummidipudi, Krishnaiah (2010-09-17). Power-efficient System Design (1 ed.). Springer. pp. 25, 73. ISBN 978-1-4419-6387-1.
  • ^ Hübner, Michael; Becker, Jürgen (2010-12-03). Multiprocessor System-on-Chip: Hardware Design and Tool Integration (1 ed.). Springer. p. 176. ISBN 978-1-4419-6459-5.
  • ^ Ratto, Francesco; Fanni, Tiziana; Raffo, Luigi; Sau, Carlo (2021-01-05). "Mutual Impact between Clock Gating and High Level Synthesis in Reconfigurable Hardware Accelerators". Electronics. 73: 73. doi:10.3390/electronics10010073. hdl:11584/345408.
  • Further reading[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Clock_gating&oldid=1224287744"

    Categories: 
    Clock signal
    Electronic design automation
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Articles needing additional references from December 2009
    All articles needing additional references
     



    This page was last edited on 17 May 2024, at 12:46 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki