Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Preparation  





2 Uses  



2.1  Weapon  





2.2  Substitutes  







3 Safety  





4 Mineral  





5 References  





6 External links  














Calcium oxide






Afrikaans
العربية
Aragonés
Aymar aru
Azərbaycanca
تۆرکجه

Български
Bosanski
Català
Чӑвашла
Čeština
Dansk
Deutsch
Eesti
Ελληνικά
Español
Esperanto
Euskara
فارسی
Français
Galego

Հայերեն
ि
Hrvatski
Bahasa Indonesia
Italiano
עברית
Қазақша
Кыргызча
Latviešu
Lietuvių
Magyar
Македонски

Bahasa Melayu

Nederlands

Norsk bokmål
Occitan
Oʻzbekcha / ўзбекча
Polski
Português
Română
Русский
Scots
Shqip
Simple English
Slovenčina
Slovenščina
Српски / srpski
Srpskohrvatski / српскохрватски
Suomi
Svenska
Tagalog
ி

Türkçe
Українська
اردو
Tiếng Vit
Winaray



 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from CaO)

Calcium oxide
Calcium oxide

Ionic crystal structure of calcium oxide
  Ca2+   O2-


Powder sample of white calcium oxide

Names
IUPAC name

Calcium oxide

Other names
  • Quicklime
  • Burnt lime
  • Unslaked lime
  • Free lime (building)
  • Caustic lime
  • Pebble lime
  • Calcia
  • Oxide of calcium
  • Identifiers

    CAS Number

    3D model (JSmol)

    ChEBI
    ChEMBL
    ChemSpider
    ECHA InfoCard 100.013.763 Edit this at Wikidata
    EC Number
    • 215-138-9
    E number E529 (acidity regulators, ...)

    Gmelin Reference

    485425
    KEGG

    PubChem CID

    RTECS number
    • EW3100000
    UNII
    UN number 1910

    CompTox Dashboard (EPA)

    • InChI=1S/Ca.O

      Key: ODINCKMPIJJUCX-UHFFFAOYSA-N

    • InChI=1/Ca.O/rCaO/c1-2

      Key: ODINCKMPIJJUCX-BFMVISLHAU

    • O=[Ca]

    Properties

    Chemical formula

    CaO
    Molar mass 56.0774 g/mol
    Appearance White to pale yellow/brown powder
    Odor Odorless
    Density 3.34 g/cm3[1]
    Melting point 2,613 °C (4,735 °F; 2,886 K)[1]
    Boiling point 2,850 °C (5,160 °F; 3,120 K) (100 hPa)[2]

    Solubility in water

    Reacts to form calcium hydroxide
    SolubilityinMethanol Insoluble (also in diethyl ether, octanol)
    Acidity (pKa) 12.8

    Magnetic susceptibility (χ)

    −15.0×10−6 cm3/mol
    Structure

    Crystal structure

    Cubic, cF8
    Thermochemistry

    Std molar
    entropy
    (S298)

    40 J·mol−1·K−1[3]

    Std enthalpy of
    formation
    fH298)

    −635 kJ·mol−1[3]
    Pharmacology

    ATCvet code

    QP53AX18 (WHO)
    Hazards
    GHS labelling:

    Pictograms

    GHS05: CorrosiveGHS07: Exclamation mark

    Signal word

    Danger

    Hazard statements

    H302, H314, H315, H335

    Precautionary statements

    P260, P261, P264, P270, P271, P280, P301+P312, P301+P330+P331, P302+P352, P303+P361+P353, P304+P340, P305+P351+P338, P310, P312, P321, P330, P332+P313, P362, P363, P403+P233, P405, P501
    NFPA 704 (fire diamond)
    NFPA 704 four-colored diamondHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 0: Will not burn. E.g. waterInstability 2: Undergoes violent chemical change at elevated temperatures and pressures, reacts violently with water, or may form explosive mixtures with water. E.g. white phosphorusSpecial hazard W: Reacts with water in an unusual or dangerous manner. E.g. sodium, sulfuric acid
    3
    0
    2
    W
    Flash point Non-flammable[4]
    NIOSH (US health exposure limits):

    PEL (Permissible)

    TWA 5 mg/m3[4]

    REL (Recommended)

    TWA 2 mg/m3[4]

    IDLH (Immediate danger)

    25 mg/m3[4]
    Safety data sheet (SDS) ICSC 0409
    Related compounds

    Other anions

    Calcium sulfide
    Calcium hydroxide
    Calcium selenide
    Calcium telluride

    Other cations

    Beryllium oxide
    Magnesium oxide
    Strontium oxide
    Barium oxide
    Radium oxide

    Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

    Infobox references

    Calcium oxide (formula: CaO), commonly known as quicklimeorburnt lime, is a widely used chemical compound. It is a white, caustic, alkaline, crystalline solid at room temperature. The broadly used term lime connotes calcium-containing inorganic compounds, in which carbonates, oxides, and hydroxides of calcium, silicon, magnesium, aluminium, and iron predominate. By contrast, quicklime specifically applies to the single compound calcium oxide. Calcium oxide that survives processing without reacting in building products, such as cement, is called free lime.[5]

    Quicklime is relatively inexpensive. Both it and the chemical derivative calcium hydroxide (of which quicklime is the base anhydride) are important commodity chemicals.

    Preparation[edit]

    Calcium oxide is usually made by the thermal decomposition of materials, such as limestoneorseashells, that contain calcium carbonate (CaCO3; mineral calcite) in a lime kiln. This is accomplished by heating the material to above 825 °C (1,517 °F),[6][7] a process called calcinationorlime-burning, to liberate a molecule of carbon dioxide (CO2), leaving quicklime behind. This is also one of the few chemical reactions known in prehistoric times.[8]

    CaCO3(s) → CaO(s) + CO2(g)

    The quicklime is not stable and, when cooled, will spontaneously react with CO2 from the air until, after enough time, it will be completely converted back to calcium carbonate unless slaked with water to set as lime plasterorlime mortar.

    Annual worldwide production of quicklime is around 283 million tonnes. China is by far the world's largest producer, with a total of around 170 million tonnes per year. The United States is the next largest, with around 20 million tonnes per year.[9]

    Approximately 1.8 t of limestone is required per 1.0 t of quicklime. Quicklime has a high affinity for water and is a more efficient desiccant than silica gel. The reaction of quicklime with water is associated with an increase in volume by a factor of at least 2.5.[10]

    Hydroxyapatite's free CaO content rises with increased calcination temperatures and longer times. It also pinpoints particular temperature cutoffs and durations that impact the production of CaO, offering information on how calcination parameters impact the composition of the material.

    Uses[edit]

    A demonstration of slaking of quicklime as a strongly exothermic reaction. Drops of water are added to pieces of quicklime. After a while, a pronounced exothermic reaction occurs ('slaking of lime'). The temperature can reach up to some 300 °C (572 °F).
    CaO (s) + H2O (l) ⇌ Ca(OH)2 (aq) (ΔHr = −63.7 kJ/mol of CaO)
    As it hydrates, an exothermic reaction results and the solid puffs up. The hydrate can be reconverted to quicklime by removing the water by heating it to redness to reverse the hydration reaction. One litre of water combines with approximately 3.1 kilograms (6.8 lb) of quicklime to give calcium hydroxide plus 3.54 MJ of energy. This process can be used to provide a convenient portable source of heat, as for on-the-spot food warming in a self-heating can, cooking, and heating water without open flames. Several companies sell cooking kits using this heating method.[12]

    Weapon[edit]

    In 80 BC, the Roman general Sertorius deployed choking clouds of caustic lime powder to defeat the Characitani of Hispania, who had taken refuge in inaccessible caves.[23] A similar dust was used in China to quell an armed peasant revolt in 178 AD, when lime chariots equipped with bellows blew limestone powder into the crowds.[24]

    Quicklime is also thought to have been a component of Greek fire. Upon contact with water, quicklime would increase its temperature above 150 °C (302 °F) and ignite the fuel.[25]

    David Hume, in his History of England, recounts that early in the reign of Henry III, the English Navy destroyed an invading French fleet by blinding the enemy fleet with quicklime.[26] Quicklime may have been used in medieval naval warfare – up to the use of "lime-mortars" to throw it at the enemy ships.[27]

    Substitutes[edit]

    Limestone is a substitute for lime in many applications, which include agriculture, fluxing, and sulfur removal. Limestone, which contains less reactive material, is slower to react and may have other disadvantages compared with lime, depending on the application; however, limestone is considerably less expensive than lime. Calcined gypsum is an alternative material in industrial plasters and mortars. Cement, cement kiln dust, fly ash, and lime kiln dust are potential substitutes for some construction uses of lime. Magnesium hydroxide is a substitute for lime in pH control, and magnesium oxide is a substitute for dolomitic lime as a flux in steelmaking.[28]

    Safety[edit]

    Because of vigorous reaction of quicklime with water, quicklime causes severe irritation when inhaled or placed in contact with moist skin or eyes. Inhalation may cause coughing, sneezing, and labored breathing. It may then evolve into burns with perforation of the nasal septum, abdominal pain, nausea and vomiting. Although quicklime is not considered a fire hazard, its reaction with water can release enough heat to ignite combustible materials.[29][better source needed]

    Mineral[edit]

    Calcium oxide is also a separate mineral species (with the unit formula CaO), named 'Lime'.[30][31] It has an isometric crystal system, and can form a solid solution series with monteponite. The crystal is brittle, pyrometamorphic, and is unstable in moist air, quickly turning into portlandite (Ca(OH)2).[32]

    References[edit]

    1. ^ a b Haynes, William M., ed. (2011). CRC Handbook of Chemistry and Physics (92nd ed.). Boca Raton, FL: CRC Press. p. 4.55. ISBN 1-4398-5511-0.
  • ^ Calciumoxid Archived 2013-12-30 at the Wayback Machine. GESTIS database
  • ^ a b Zumdahl, Steven S. (2009). Chemical Principles 6th Ed. Houghton Mifflin Company. p. A21. ISBN 978-0-618-94690-7.
  • ^ a b c d NIOSH Pocket Guide to Chemical Hazards. "#0093". National Institute for Occupational Safety and Health (NIOSH).
  • ^ "free lime". DictionaryOfConstruction.com. Archived from the original on 2017-12-09.
  • ^ Merck Index of Chemicals and Drugs, 9th edition monograph 1650
  • ^ Kumar, Gupta Sudhir; Ramakrishnan, Anushuya; Hung, Yung-Tse (2007), Wang, Lawrence K.; Hung, Yung-Tse; Shammas, Nazih K. (eds.), "Lime Calcination", Advanced Physicochemical Treatment Technologies, Handbook of Environmental Engineering, vol. 5, Totowa, NJ: Humana Press, pp. 611–633, doi:10.1007/978-1-59745-173-4_14, ISBN 978-1-58829-860-7, retrieved 2022-07-26
  • ^ "Lime throughout history | Lhoist - Minerals and lime producer". Lhoist.com. Retrieved 10 March 2022.
  • ^ Miller, M. Michael (2007). "Lime". Minerals Yearbook (PDF). U.S. Geological Survey. p. 43.13.
  • ^ a b c d e f Tony Oates (2007), "Lime and Limestone", Ullmann's Encyclopedia of Industrial Chemistry (7th ed.), Wiley, pp. 1–32, doi:10.1002/14356007.a15_317, ISBN 978-3527306732
  • ^ Collie, Robert L. "Solar heating system" U.S. patent 3,955,554 issued May 11, 1976
  • ^ Gretton, Lel. "Lime power for cooking - medieval pots to 21st century cans". Old & Interesting. Retrieved 13 February 2018.
  • ^ "Compound Summary for CID 14778 - Calcium Oxide". PubChem.
  • ^ Gray, Theodore (September 2007). "Limelight in the Limelight". Popular Science: 84. Archived from the original on 2008-10-13. Retrieved 2009-03-31.
  • ^ Tel Aviv University (August 9, 2012). "Neolithic man: The first lumberjack?". phys.org. Retrieved 2023-02-02.
  • ^ Karkanas, P.; Stratouli, G. (2011). "Neolithic Lime Plastered Floors in Drakaina Cave, Kephalonia Island, Western Greece: Evidence of the Significance of the Site". The Annual of the British School at Athens. 103: 27–41. doi:10.1017/S006824540000006X. S2CID 129562287.
  • ^ Connelly, Ashley Nicole (May 2012) Analysis and Interpretation of Neolithic Near Eastern Mortuary Rituals from a Community-Based Perspective Archived 2015-03-09 at the Wayback Machine. Baylor University Thesis, Texas
  • ^ Walker, Thomas A (1888). The Severn Tunnel Its Construction and Difficulties. London: Richard Bentley and Son. p. 92.
  • ^ "Scientific and Industrial Notes". Manchester Times. Manchester, England: 8. 13 May 1882.
  • ^ US Patent 255042, 14 March 1882
  • ^ Schotsmans, Eline M.J.; Denton, John; Dekeirsschieter, Jessica; Ivaneanu, Tatiana; Leentjes, Sarah; Janaway, Rob C.; Wilson, Andrew S. (April 2012). "Effects of hydrated lime and quicklime on the decay of buried human remains using pig cadavers as human body analogues". Forensic Science International. 217 (1–3): 50–59. doi:10.1016/j.forsciint.2011.09.025. hdl:2268/107339. PMID 22030481.
  • ^ "Riddle solved: Why was Roman concrete so durable?", MIT News, January 6, 2023
  • ^ Plutarch, "Sertorius 17.1–7", Parallel Lives
  • ^ Adrienne Mayor (2005), "Ancient Warfare and Toxicology", in Philip Wexler (ed.), Encyclopedia of Toxicology, vol. 4 (2nd ed.), Elsevier, pp. 117–121, ISBN 0-12-745354-7
  • ^ Croddy, Eric (2002). Chemical and biological warfare: a comprehensive survey for the concerned citizen. Springer. p. 128. ISBN 0-387-95076-1.
  • ^ David Hume (1756). History of England. Vol. I.
  • ^ Sayers, W. (2006). "The Use of Quicklime in Medieval Naval Warfare". The Mariner's Mirror. Volume 92. Issue 3. pp. 262–269.
  • ^ "Lime" (PDF). Prd-wret.s3-us-west-2.amazonaws.com. p. 96. Archived from the original (PDF) on 2021-12-19. Retrieved 2022-03-10.
  • ^ Mallinckrodt Baker Inc. - Strategic Services Division (December 8, 1996). "Hazards". ww25.hazard.com. Archived from the original on May 1, 2012. Retrieved 2023-02-02.{{cite web}}: CS1 maint: unfit URL (link)
  • ^ "List of Minerals". Ima-mineralogy.org. 21 March 2011.
  • ^ Fiquet, G.; Richet, P.; Montagnac, G. (Dec 1999). "High-temperature thermal expansion of lime, periclase, corundum and spinel". Physics and Chemistry of Minerals. 27 (2): 103–111. Bibcode:1999PCM....27..103F. doi:10.1007/s002690050246. S2CID 93706828. Retrieved 9 February 2023.
  • ^ Tian, Lin, Yan, X. K., S. C., J., & Zhao, C. Y. (2022). "Lime". Mindat.org. doi:10.1016/j.cej.2021.131229. Retrieved 10 March 2022.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Calcium_oxide&oldid=1230523210"

    Categories: 
    Alchemical substances
    Bases (chemistry)
    Calcium compounds
    Cement
    Dehydrating agents
    Desiccants
    Disinfectants
    E-number additives
    Limestone
    Rock salt crystal structure
    Oxides
    Hidden categories: 
    Webarchive template wayback links
    CS1 maint: unfit URL
    CS1 maint: multiple names: authors list
    Articles with short description
    Short description is different from Wikidata
    ECHA InfoCard ID from Wikidata
    E number from Wikidata
    Chembox having GHS data
    Articles containing unverified chemical infoboxes
    Short description matches Wikidata
    All articles lacking reliable references
    Articles lacking reliable references from June 2023
    Commons category link is on Wikidata
    Articles with GND identifiers
     



    This page was last edited on 23 June 2024, at 06:34 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki