Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Organic chemistry  



1.1  Hydroformylation  





1.2  Decarbonylation  





1.3  Acetic acid and acetic anhydride  





1.4  Oxidative carbonylation  





1.5  Hydrocarboxylation and hydroesterification  





1.6  Other reactions  







2 Carbonylation in inorganic chemistry  





3 References  














Carbonylation






العربية
Čeština
Deutsch
Español
Euskara
فارسی
Français

Bahasa Indonesia
Italiano
Македонски
Nederlands
Polski
Português
Română
Русский
Suomi
ி
Українська
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inchemistry, carbonylation refers to reactions that introduce carbon monoxide (CO) into organic and inorganic substrates. Carbon monoxide is abundantly available and conveniently reactive, so it is widely used as a reactant in industrial chemistry. The term carbonylation also refers to oxidation of protein side chains.

Organic chemistry

[edit]

Several industrially useful organic chemicals are prepared by carbonylations, which can be highly selective reactions. Carbonylations produce organic carbonyls, i.e., compounds that contain the C=O functional group such as aldehydes (−CH=O), carboxylic acids (−C(=O)OH) and esters (−C(=O)O−).[1][2] Carbonylations are the basis of many types of reactions, including hydroformylation and Reppe reactions. These reactions require metal catalysts, which bind and activate the CO.[3] These processes involve transition metal acyl complexes as intermediates. Much of this theme was developed by Walter Reppe.

Hydroformylation

[edit]

Hydroformylation entails the addition of both carbon monoxide and hydrogen to unsaturated organic compounds, usually alkenes. The usual products are aldehydes:

The reaction requires metal catalysts that bind CO, forming intermediate metal carbonyls. Many of the commodity carboxylic acids, i.e. propionic, butyric, valeric, etc, as well as many of the commodity alcohols, i.e. propanol, butanol, amyl alcohol, are derived from aldehydes produced by hydroformylation. In this way, hydroformylation is a gateway from alkenes to oxygenates.

Decarbonylation

[edit]

Few organic carbonyls undergo spontaneous decarbonylation, but many can be induced to do so with appropriate catalysts. A common transformation involves the conversion of aldehydes to alkanes, usually catalyzed by metal complexes:[4]

Few catalysts are highly active or exhibit broad scope.[5]

Acetic acid and acetic anhydride

[edit]

Large-scale applications of carbonylation are the Monsanto acetic acid process and Cativa process, which convert methanoltoacetic acid. In another major industrial process, acetic anhydride is prepared by a related carbonylation of methyl acetate.[6]

Oxidative carbonylation

[edit]

Dimethyl carbonate and dimethyl oxalate are produced industrially using carbon monoxide and an oxidant, in effect as a source of CO2+.[1]

The oxidative carbonylation of methanol is catalyzed by copper(I) salts, which form transient carbonyl complexes. For the oxidative carbonylation of alkenes, palladium complexes are used.

Hydrocarboxylation and hydroesterification

[edit]

Inhydrocarboxylation, alkenes and alkynes are the substrates. This method is used industrially to produce propionic acid from ethylene using nickel carbonyl as the catalyst:[1]

In the industrial synthesis of ibuprofen, a benzylic alcohol is converted to the corresponding arylacetic acid via a Pd-catalyzed carbonylation:[1]

Acrylic acid was once mainly prepared by the hydrocarboxylation of acetylene.[7]

Synthesis of acrylic acid using "Reppe chemistry"; a metal catalyst is required.

Nowadays, however, the preferred route to acrylic acid entails the oxidation of propene, exploiting its low cost and the high reactivity of the allylic C−H bonds.

Hydroesterification is like hydrocarboxylation, but it uses alcohols in place of water.[8]

The process is catalyzed by Herrmann's catalyst, Pd[C6H4(CH2PBu-t)2]2. Under similar conditions, other Pd-diphosphines catalyze formation of polyketones.

Other reactions

[edit]

The Koch reaction is a special case of hydrocarboxylation reaction that does not rely on metal catalysts. Instead, the process is catalyzed by strong acids such as sulfuric acid or the combination of phosphoric acid and boron trifluoride. The reaction is less applicable to simple alkene. The industrial synthesis of glycolic acid is achieved in this way:[9]

The conversion of isobutenetopivalic acid is also illustrative:

Alkyl, benzyl, vinyl, aryl, and allyl halides can also be carbonylated in the presence carbon monoxide and suitable catalysts such as manganese, iron, or nickel powders.[10]

In the Collman reaction, an iron carbonyl complex serves as both metal catalyst and carbonyl source.

Carbonylation in inorganic chemistry

[edit]

Metal carbonyls, compounds with the formula M(CO)xLy (M = metal; L = other ligands) are prepared by carbonylation of transition metals. Iron and nickel powder react directly with CO to give Fe(CO)5 and Ni(CO)4, respectively. Most other metals form carbonyls less directly, such as from their oxides or halides. Metal carbonyls are widely employed as catalysts in the hydroformylation and Reppe processes discussed above.[11] Inorganic compounds that contain CO ligands can also undergo decarbonylation, often via a photochemical reaction.

References

[edit]
  1. ^ a b c d W. Bertleff; M. Roeper; X. Sava. "Carbonylation". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a05_217. ISBN 978-3527306732.
  • ^ Arpe, .J.: Industrielle organische Chemie: Bedeutende vor- und Zwischenprodukte, 2007, Wiley-VCH-Verlag, ISBN 3-527-31540-3
  • ^ Beller, Matthias; Cornils, B.; Frohning, C. D.; Kohlpaintner, C. W. (1995). "Progress in hydroformylation and carbonylation". Journal of Molecular Catalysis A: Chemical. 104: 17–85. doi:10.1016/1381-1169(95)00130-1.
  • ^ Hartwig, J. F. Organotransition Metal Chemistry, from Bonding to Catalysis; University Science Books: New York, 2010.
  • ^ Kreis, M.; Palmelund, A.; Bunch, L.; Madsen, R., "A General and Convenient Method for the Rhodium-Catalyzed Decarbonylation of Aldehydes", Advanced Synthesis & Catalysis 2006, 348, 2148-2154. doi:10.1002/adsc.200600228
  • ^ Zoeller, J. R.; Agreda, V. H.; Cook, S. L.; Lafferty, N. L.; Polichnowski, S. W.; Pond, D. M. (1992). "Eastman Chemical Company Acetic Anhydride Process". Catalysis Today. 13: 73–91. doi:10.1016/0920-5861(92)80188-S.
  • ^ Takashi Ohara, Takahisa Sato, Noboru Shimizu, Günter Prescher Helmut Schwind, Otto Weiberg, Klaus Marten, Helmut Greim (2003). "Acrylic Acid and Derivatives". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a01_161.pub2. ISBN 978-3527306732.{{cite encyclopedia}}: CS1 maint: multiple names: authors list (link)
  • ^ El Ali, B.; Alper, H. "Hydrocarboxylation and hydroesterification reactions catalyzed by transition metal complexes" In Transition Metals for Organic Synthesis, 2nd ed.; Beller, M., Bolm, C., Eds.; Wiley-VCH:Weinheim, 2004. ISBN 978-3-527-30613-8
  • ^ Karlheinz Miltenberger, "Hydroxycarboxylic Acids, Aliphatic" in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH: Weinheim, 2003
  • ^ Riemenschneider, Wilhelm; Bolt, Hermann (2000). "Esters, Organic". Ullmann's Encyclopedia of Industrial Chemistry: 10. doi:10.1002/14356007.a09_565. ISBN 978-3527306732.
  • ^ Elschenbroich, C. ”Organometallics” (2006) Wiley-VCH: Weinheim. ISBN 978-3-527-29390-2

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Carbonylation&oldid=1213897853"

    Categories: 
    Chemical reactions
    Carbon monoxide
    Hidden categories: 
    Articles containing German-language text
    CS1 maint: multiple names: authors list
    Articles with short description
    Short description is different from Wikidata
     



    This page was last edited on 15 March 2024, at 19:55 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki