Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  



























Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Overview  



1.1  General properties  





1.2  Characteristics  







2 Modeling and simulation  





3 Evolution of complexity  





4 See also  





5 References  





6 Literature  





7 External links  














Complex adaptive system






العربية
Català
Deutsch
Español
فارسی
Français
עברית
Nederlands

Português
Русский
Slovenčina
Türkçe
Українська
Tiếng Vit


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
Wikiquote
 


















From Wikipedia, the free encyclopedia
 


Acomplex adaptive system is a system that is complex in that it is a dynamic network of interactions, but the behavior of the ensemble may not be predictable according to the behavior of the components. It is adaptive in that the individual and collective behavior mutate and self-organize corresponding to the change-initiating micro-event or collection of events.[1][2][3] It is a "complex macroscopic collection" of relatively "similar and partially connected micro-structures" formed in order to adapt to the changing environment and increase their survivability as a macro-structure.[1][2][4] The Complex Adaptive Systems approach builds on replicator dynamics.[5]

The study of complex adaptive systems, a subset of nonlinear dynamical systems,[6] is an interdisciplinary matter that attempts to blend insights from the natural and social sciences to develop system-level models and insights that allow for heterogeneous agents, phase transition, and emergent behavior.[7]

Overview[edit]

Complex Adaptive Systems

The term complex adaptive systems, or complexity science, is often used to describe the loosely organized academic field that has grown up around the study of such systems. Complexity science is not a single theory—it encompasses more than one theoretical framework and is interdisciplinary, seeking the answers to some fundamental questions about living, adaptable, changeable systems. Complex adaptive systems may adopt hard or softer approaches.[8] Hard theories use formal language that is precise, tend to see agents as having tangible properties, and usually see objects in a behavioral system that can be manipulated in some way. Softer theories use natural language and narratives that may be imprecise, and agents are subjects having both tangible and intangible properties. Examples of hard complexity theories include Complex Adaptive Systems (CAS) and Viability Theory, and a class of softer theory is Viable System Theory. Many of the propositional consideration made in hard theory are also of relevance to softer theory. From here on, interest will now center on CAS.


The study of CAS focuses on complex, emergent and macroscopic properties of the system.[4][9][10] John H. Holland said that CAS "are systems that have a large numbers of components, often called agents, that interact and adapt or learn."[11]

Typical examples of complex adaptive systems include: climate; cities; firms; markets; governments; industries; ecosystems; social networks; power grids; animal swarms; traffic flows; social insect (e.g. ant) colonies;[12] the brain and the immune system; and the cell and the developing embryo. Human social group-based endeavors, such as political parties, communities, geopolitical organizations, war, and terrorist networks are also considered CAS.[12][13][14] The internet and cyberspace—composed, collaborated, and managed by a complex mix of human–computer interactions, is also regarded as a complex adaptive system.[15][16][17] CAS can be hierarchical, but more often exhibit aspects of "self-organization".[18]

The term complex adaptive system was coined in 1968 by sociologist Walter F. Buckley[19][20] who proposed a model of cultural evolution which regards psychological and socio-cultural systems as analogous with biological species.[21] In the modern context, complex adaptive system is sometimes linked to memetics,[22] or proposed as a reformulation of memetics.[23] Michael D. Cohen and Robert Axelrod however argue the approach is not social Darwinismorsociobiology because, even though the concepts of variation, interaction and selection can be applied to modelling 'populations of business strategies', for example, the detailed evolutionary mechanisms are often distinctly unbiological.[24] As such, complex adaptive system is more similar to Richard Dawkins's idea of replicators.[24][25][26]

General properties[edit]

What distinguishes a CAS from a pure multi-agent system (MAS) is the focus on top-level properties and features like self-similarity, complexity, emergence and self-organization. A MAS is defined as a system composed of multiple interacting agents; whereas in CAS, the agents as well as the system are adaptive and the system is self-similar. A CAS is a complex, self-similar collectivity of interacting, adaptive agents. Complex Adaptive Systems are characterized by a high degree of adaptive capacity, giving them resilience in the face of perturbation.

Other important properties are adaptation (orhomeostasis), communication, cooperation, specialization, spatial and temporal organization, and reproduction. They can be found on all levels: cells specialize, adapt and reproduce themselves just like larger organisms do. Communication and cooperation take place on all levels, from the agent to the system level. The forces driving co-operation between agents in such a system, in some cases, can be analyzed with game theory.

Characteristics[edit]

Some of the most important characteristics of complex adaptive systems are:[27]

Robert Axelrod & Michael D. Cohen identify a series of key terms from a modeling perspective:[28]

Turner and Baker synthesized the characteristics of complex adaptive systems from the literature and tested these characteristics in the context of creativity and innovation.[29] Each of these eight characteristics had been shown to be present in the creativity and innovative processes:

Modeling and simulation[edit]

CAS are occasionally modeled by means of agent-based models and complex network-based models.[34] Agent-based models are developed by means of various methods and tools primarily by means of first identifying the different agents inside the model.[35] Another method of developing models for CAS involves developing complex network models by means of using interaction data of various CAS components.[36]

In 2013 SpringerOpen/BioMed Central launched an online open-access journal on the topic of complex adaptive systems modeling (CASM). Publication of the journal ceased in 2020.[37]

Evolution of complexity[edit]

Passive versus active trends in the evolution of complexity. CAS at the beginning of the processes are colored red. Changes in the number of systems are shown by the height of the bars, with each set of graphs moving up in a time series.

Living organisms are complex adaptive systems. Although complexity is hard to quantify in biology, evolution has produced some remarkably complex organisms.[38] This observation has led to the common misconception of evolution being progressive and leading towards what are viewed as "higher organisms".[39]

If this were generally true, evolution would possess an active trend towards complexity. As shown below, in this type of process the value of the most common amount of complexity would increase over time.[40] Indeed, some artificial life simulations have suggested that the generation of CAS is an inescapable feature of evolution.[41][42]

However, the idea of a general trend towards complexity in evolution can also be explained through a passive process.[40] This involves an increase in variance but the most common value, the mode, does not change. Thus, the maximum level of complexity increases over time, but only as an indirect product of there being more organisms in total. This type of random process is also called a bounded random walk.

In this hypothesis, the apparent trend towards more complex organisms is an illusion resulting from concentrating on the small number of large, very complex organisms that inhabit the right-hand tail of the complexity distribution and ignoring simpler and much more common organisms. This passive model emphasizes that the overwhelming majority of species are microscopic prokaryotes,[43] which comprise about half the world's biomass[44] and constitute the vast majority of Earth's biodiversity.[45] Therefore, simple life remains dominant on Earth, and complex life appears more diverse only because of sampling bias.

If there is a lack of an overall trend towards complexity in biology, this would not preclude the existence of forces driving systems towards complexity in a subset of cases. These minor trends would be balanced by other evolutionary pressures that drive systems towards less complex states.

See also[edit]

  • Chaos theory
  • Cognitive science
  • Command and Control Research Program
  • Complex system
  • Computational sociology
  • Dual-phase evolution
  • Econophysics
  • Enterprise systems engineering
  • Generative sciences
  • Mean-field game theory
  • Open system (systems theory)
  • Santa Fe Institute
  • Simulated reality
  • Sociology and complexity science
  • Super wicked problem
  • Swarm Development Group
  • Universal Darwinism
  • References[edit]

    1. ^ a b "Insights from Complexity Theory: Understanding Organisations better". by Assoc. Prof. Amit Gupta, Student contributor – S. Anish, IIM Bangalore. Retrieved 1 June 2012.
  • ^ a b "Ten Principles of Complexity & Enabling Infrastructures". by Professor Eve Mitleton-Kelly, Director Complexity Research Programme, London School of Economics. CiteSeerX 10.1.1.98.3514. {{cite journal}}: Cite journal requires |journal= (help)
  • ^ a b Miller, John H., and Scott E. Page (1 January 2007). Complex adaptive systems : an introduction to computational models of social life. Princeton University Press. ISBN 9781400835522. OCLC 760073369.{{cite book}}: CS1 maint: multiple names: authors list (link)
  • ^ a b "Evolutionary Psychology, Complex Systems, and Social Theory" (PDF). Bruce MacLennan, Department of Electrical Engineering & Computer Science, University of Tennessee, Knoxville. eecs.utk.edu. Retrieved 25 August 2012.
  • ^ Foster, John (2006). "Why is economics not a complex systems science?" (PDF). Journal of Economic Issues. 40 (4): 1069–1091. doi:10.1080/00213624.2006.11506975. S2CID 17486106. Retrieved 18 January 2020.
  • ^ Lansing, J. Stephen (2003). "Complex Adaptive Systems". Annual Review of Anthropology. 32 (1). Annual Reviews: 183–204. doi:10.1146/annurev.anthro.32.061002.093440. ISSN 0084-6570.
  • ^ Auerbach, David (19 January 2016). "The Theory of Everything and Then Some". Slate. ISSN 1091-2339. Retrieved 7 March 2017.
  • ^ Yolles, Maurice (2018). "The complexity continuum, Part 1: hard and soft theories". Kybernetes. 48 (6): 1330–1354. doi:10.1108/K-06-2018-0337. S2CID 69636750.
  • ^ Faucher, Jean-Baptiste. "A Complex Adaptive Organization Under the Lens of the LIFE Model:The Case of Wikipedia". Egosnet.org. Retrieved 25 August 2012.
  • ^ "Complex Adaptive Systems as a Model for Evaluating Organisational : Change Caused by the Introduction of Health Information Systems" (PDF). Kieren Diment, Ping Yu, Karin Garrety, Health Informatics Research Lab, Faculty of Informatics, University of Wollongong, School of Management, University of Wollongong, NSW. uow.edu.au. Archived from the original (PDF) on 5 September 2012. Retrieved 25 August 2012.
  • ^ Holland John H (2006). "Studying Complex Adaptive Systems" (PDF). Journal of Systems Science and Complexity. 19 (1): 1–8. doi:10.1007/s11424-006-0001-z. hdl:2027.42/41486. S2CID 27398208.
  • ^ a b Steven Strogatz, Duncan J. Watts and Albert-László Barabási "explaining synchronicity (at 6:08), network theory, self-adaptation mechanism of complex systems, Six Degrees of separation, Small world phenomenon, events are never isolated as they depend upon each other (at 27:07) in the BBC / Discovery Documentary". BBC / Discovery. Retrieved 11 June 2012. "Unfolding the science behind the idea of six degrees of separation"
  • ^ "Toward a Complex Adaptive Intelligence Community The Wiki and the Blog". D. Calvin Andrus. Central Intelligence Agency. Archived from the original on 13 June 2007. Retrieved 25 August 2012.
  • ^ Solvit, Samuel (2012). "Dimensions of War: Understanding War as a Complex Adaptive System". L'Harmattan. Retrieved 25 August 2013.
  • ^ "The Internet Analyzed as a Complex Adaptive System". Archived from the original on 29 May 2019. Retrieved 25 August 2012.
  • ^ "Cyberspace: The Ultimate Complex Adaptive System" (PDF). The International C2 Journal. Retrieved 25 August 2012. by Paul W. Phister Jr
  • ^ "Complex Adaptive Systems" (PDF). mit.edu. 2001. Retrieved 25 August 2012. by Serena Chan, Research Seminar in Engineering Systems
  • ^ Holland, John H. (John Henry) (1996). Hidden order: how adaptation builds complexity. Addison-Wesley. ISBN 0201442302. OCLC 970420200.
  • ^ Buckley, Walter; Schwandt, David; Goldstein, Jeffrey A. (2008). "An introduction to "Society as a complex adaptive system"". E:CO Emergence: Complexity & Organization. 10 (3): 86–112. Retrieved 2 November 2020.
  • ^ Bentley, Chance; Anandhi, Aavudai (2020). "Representing driver-response complexity in ecosystems using an improved conceptual model". Ecological Modelling. 437 (437): 109320. doi:10.1016/j.ecolmodel.2020.109320. Retrieved 24 December 2020.
  • ^ Buckley, Walter W. (1968). Modern Systems Research for the Behavioral Scientist: A Sourcebook. Aldine. ISBN 9780202369402. Retrieved 2 November 2020.
  • ^ Situngkir, Hokky (2004). "On selfish memes: culture as complex adaptive system". Journal of Social Complexity. 2 (1): 20–32. Retrieved 2 November 2020.
  • ^ Frank, Roslyn M. (2008). "The Language–organism–species analogy: a complex adaptive systems approach to shifting perspectives on "language"". In Frank (ed.). Sociocultural Situatedness, Vol. 2. De Gruyter. pp. 215–262. ISBN 978-3-11-019911-6. Retrieved 2 November 2020.
  • ^ a b Axelrod, Robert M.; Cohen, M. D. (1999). Harnessing Complexity: Organizational Implications of a Scientific Frontier. Free Press. ISBN 9780684867175.
  • ^ Gell-Mann, Murray (1994). "Complex adaptive systems" (PDF). In Cowan, G.; Pines, D.; Meltzer, D. (eds.). Studies in the Sciences of Complexity, Proc. Vol. XIX. Addison-Wesley. pp. 17–45. Retrieved 6 November 2020.
  • ^ Fromm, Jochen (2004). The Emergence of Complexity. Kassel University Press. Retrieved 6 November 2020.
  • ^ Paul Cilliers (1998) Complexity and Postmodernism: Understanding Complex Systems
  • ^ Robert Axelrod & Michael D. Cohen, Harnessing Complexity. Basic Books, 2001
  • ^ Turner, J. R., & Baker, R. (2020). Just doing the do: A case study testing creativity and innovative processes as complex adaptive systems. New Horizons in Adult Education and Human Resource Development, 32(2). doi:10.1002/nha3.20283
  • ^ a b c d e Lindberg, C.; Schneider, M. (2013). "Combating infections at Maine Medical Center: Insights into complexity-informed leadership from positive deviance". Leadership. 9 (2): 229–253. doi:10.1177/1742715012468784. S2CID 144225216.
  • ^ Boal, K. B.; Schultz, P. L. (2007). "Storytelling, time, and evolution: The role of strategic leadership in complex adaptive systems". The Leadership Quarterly. 18 (4): 411–428. doi:10.1016/j.leaqua.2007.04.008.
  • ^ Luoma, M (2006). "A play of four arenas – How complexity can serve management development". Management Learning. 37: 101–123. doi:10.1177/1350507606058136. S2CID 14435060.
  • ^ a b Borzillo, S.; Kaminska-Labbe, R. (2011). "Unravelling the dynamics of knowledge creation in communities of practice through complexity theory lenses". Knowledge Management Research & Practice. 9 (4): 353–366. doi:10.1057/kmrp.2011.13. S2CID 62134156.
  • ^ Muaz A. K. Niazi, Towards A Novel Unified Framework for Developing Formal, Network and Validated Agent-Based Simulation Models of Complex Adaptive Systems PhD Thesis
  • ^ John H. Miller & Scott E. Page, Complex Adaptive Systems: An Introduction to Computational Models of Social Life, Princeton University Press Book page
  • ^ Melanie Mitchell, Complexity A Guided Tour, Oxford University Press, Book page
  • ^ Springer Complex Adaptive Systems Modeling Journal (CASM)
  • ^ Adami C (2002). "What is complexity?". BioEssays. 24 (12): 1085–94. doi:10.1002/bies.10192. PMID 12447974.
  • ^ McShea D (1991). "Complexity and evolution: What everybody knows". Biology and Philosophy. 6 (3): 303–24. doi:10.1007/BF00132234. S2CID 53459994.
  • ^ a b Carroll SB (2001). "Chance and necessity: the evolution of morphological complexity and diversity". Nature. 409 (6823): 1102–9. Bibcode:2001Natur.409.1102C. doi:10.1038/35059227. PMID 11234024. S2CID 4319886.
  • ^ Furusawa C, Kaneko K (2000). "Origin of complexity in multicellular organisms". Phys. Rev. Lett. 84 (26 Pt 1): 6130–3. arXiv:nlin/0009008. Bibcode:2000PhRvL..84.6130F. doi:10.1103/PhysRevLett.84.6130. PMID 10991141. S2CID 13985096.
  • ^ Adami C, Ofria C, Collier TC (2000). "Evolution of biological complexity". Proc. Natl. Acad. Sci. U.S.A. 97 (9): 4463–8. arXiv:physics/0005074. Bibcode:2000PNAS...97.4463A. doi:10.1073/pnas.97.9.4463. PMC 18257. PMID 10781045.
  • ^ Oren A (2004). "Prokaryote diversity and taxonomy: current status and future challenges". Philos. Trans. R. Soc. Lond. B Biol. Sci. 359 (1444): 623–38. doi:10.1098/rstb.2003.1458. PMC 1693353. PMID 15253349.
  • ^ Whitman W, Coleman D, Wiebe W (1998). "Prokaryotes: the unseen majority". Proc Natl Acad Sci USA. 95 (12): 6578–83. Bibcode:1998PNAS...95.6578W. doi:10.1073/pnas.95.12.6578. PMC 33863. PMID 9618454.
  • ^ Schloss P, Handelsman J (2004). "Status of the microbial census". Microbiol Mol Biol Rev. 68 (4): 686–91. doi:10.1128/MMBR.68.4.686-691.2004. PMC 539005. PMID 15590780.
  • Literature[edit]

  • Bullock S, Cliff D (2004). "Complexity and Emergent Behaviour in ICT Systems". Hewlett-Packard Labs. HP-2004-187. {{cite journal}}: Cite journal requires |journal= (help); commissioned as a report by the UK government's Foresight Programme.
  • Dooley, K., Complexity in Social Science glossary a research training project of the European Commission.
  • Edwin E. Olson; Glenda H. Eoyang (2001). Facilitating Organization Change. San Francisco: Jossey-Bass. ISBN 0-7879-5330-X.
  • Gell-Mann, Murray (1994). The quark and the jaguar: adventures in the simple and the complex. San Francisco: W.H. Freeman. ISBN 0-7167-2581-9.
  • Holland, John H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. Cambridge, Massachusetts: MIT Press. ISBN 0-262-58111-6.
  • Holland, John H. (1999). Emergence: from chaos to order. Reading, Mass: Perseus Books. ISBN 0-7382-0142-1.
  • Solvit, Samuel (2012). Dimensions of War: Understanding War as a Complex Adaptive System. Paris, France: L'Harmattan. ISBN 978-2-296-99721-9.
  • Kelly, Kevin (1994). Out of control: the new biology of machines, social systems and the economic world (Full text available online). Boston: Addison-Wesley. ISBN 0-201-48340-8.
  • Pharaoh, M.C. (online). Looking to systems theory for a reductive explanation of phenomenal experience and evolutionary foundations for higher order thought Archived 25 October 2008 at the Wayback Machine Retrieved 15 January 2008.
  • Hobbs, George & Scheepers, Rens (2010),"Agility in Information Systems: Enabling Capabilities for the IT Function," Pacific Asia Journal of the Association for Information Systems: Vol. 2: Iss. 4, Article 2. Link
  • Sidney Dekker (2011). Drift into Failure: From Hunting Broken Components to Understanding Complex Systems. CRC Press.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Complex_adaptive_system&oldid=1217013018"

    Categories: 
    Cybernetics
    Systems science
    Complex systems theory
    Management cybernetics
    Hidden categories: 
    CS1 errors: missing periodical
    CS1 maint: multiple names: authors list
    Articles with short description
    Short description is different from Wikidata
    Use dmy dates from July 2023
    Webarchive template wayback links
    Commons category link is on Wikidata
     



    This page was last edited on 3 April 2024, at 08:39 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki