Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Discovery  





2 Mechanism  





3 Detailed data  





4 Interaction with El Niño  





5 Effect on wildlife  





6 Possible effect on climate  





7 References  





8 See also  














Cromwell Current






Azərbaycanca
Беларуская
Català
Español
Esperanto
Euskara
فارسی

Italiano
Кыргызча
Lietuvių

Norsk nynorsk
Oʻzbekcha / ўзбекча
Polski
Română
Русский
Simple English
Suomi
Tiếng Vit
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


The Cromwell Current (also called Pacific Equatorial Undercurrent or just Equatorial Undercurrent) is an eastward-flowing subsurface current that extends the length of the equator in the Pacific Ocean.

The Cromwell Current was discovered in 1952[1][2]byTownsend Cromwell, a researcher with the Honolulu Laboratory of the Fish and Wildlife Service (later the United States Fish and Wildlife Service). It is 250 miles (220 nmi; 400 km) wide and flows to the east. It is hidden 300 feet (91 m) under the surface of the Pacific Ocean at the equator and is relatively shallow compared to other ocean currents being only 100 feet (30 m) from top to base. It is a powerful current with top velocities of up to 1.5 m/s (2.9 knots; 3.4 mph). The current's core coincides with the thermocline and its distance from the parallel Equatorial Counter Current is approximately 300 kilometres (190 mi; 160 nmi).[3] It has 1,000 times the volume of the Mississippi River and its length is 3,500 miles (3,000 nmi; 5,600 km).

Discovery[edit]

In 1951 researchers on board a Fish and Fish and Wildlife Service fisheries research vessel were engaged in exploratory longline fishing when they noticed that the gear deep under water drifted eastwards. This was considered unusual because the surface currents of the Pacific Ocean flow westwards at the equator, following the direction of the winds. In 1952 Townsend Cromwell led a research party to investigate how the currents of the ocean varied as a function of depth. They discovered a fast-flowing current that flowed eastwards in the deep surface layers.

Mechanism[edit]

It is difficult to explain the Cromwell Current easily. At least two different mechanisms are at work in order to guarantee the constant eastward current: (a) Because the Cromwell Current is located on the equator, the Coriolis force is equal to zero and does not act upon a water parcel. This means that the east–west pressure gradient functions without being diverted from the high-pressure area in the west toward the low-pressure area in the east, simply following the gradient. The cause of the pressure gradient is at least partially the trade winds blowing from the east westward. (b) Any water parcel flowing eastward from the west that would somehow be perturbed from its path would be diverted northward if north of the equator and southward if south of the equator. In such a case the local Coriolis force would force the parcel immediately back into the main current that flows from west to east.[4]

Detailed data[edit]

Interaction with El Niño[edit]

El Niño is a reversal of the normal situation in the Pacific Ocean. Surface water is blown westwards by the prevailing winds and deeper water is forced upwards to replace it. Every now and then, the surface water sloshes back across the ocean, bringing warm water temperatures along the eastern coasts of the Pacific. In non-El Niño years, the Cromwell Current is forced to the surface by underwater seamounts near the Galapagos islands (this is called upwelling.) However, during El Nino years the current does not upwell in this way. The waters around the islands are therefore considerably warmer during El Niño years than during normal years.

Effect on wildlife[edit]

The Cromwell Current is both oxygen- and nutrient-rich. A large number of fish are concentrated in it. Upwelling occurs near the Galapagos Islands. This brings food supplies to the surface for Galápagos penguin. Upwelling, however, is a sporadic phenomenon; it fails to occur on a regular basis, and so the food supply comes and goes. The penguins have several adaptations to cope with this, including versatility in their breeding habits.

Possible effect on climate[edit]

The effect of this current on world climate is not well understood.

References[edit]

  1. ^ Cromwell, Townsend (1953). "Circulation in a meridional plane in the central equatorial Pacific." Journal of Marine Research 12 196-213.
  • ^ Cromwell, T., Montgomery, R. B., and Stroup, E. D. (1954). "Equatorial undercurrent in the Pacific Ocean revealed by new methods." Science 119 (3097) 648-649.
  • ^ Knauss, John A. (1959). "Measurements of the Cromwell current". Deep Sea Research. 6: 275–286.
  • ^ Knauss, John A. (1997). Introduction to physical oceanography. Waveland Press. pp. 148–151. ISBN 9781577664291.
  • See also[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Cromwell_Current&oldid=1215758085"

    Category: 
    Currents of the Pacific Ocean
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 26 March 2024, at 23:09 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki