Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Operation  





2 References  














Downs cell






العربية
Deutsch
Español
فارسی
Bahasa Indonesia

Norsk bokmål
ி
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Diagram of a downs cell electrolyzing molten NaCl into chlorine gas and sodium metal

Downs' process is an electrochemical method for the commercial preparation of metallic sodium, in which molten NaCl is electrolyzed in a special apparatus called the Downs cell. The Downs cell was invented in 1923 (patented: 1924) by the American chemist James Cloyd Downs (1885–1957).[1][2]

Operation[edit]

The Downs cell uses a carbon anode and an iron cathode. The electrolyteissodium chloride that has been heated to the liquid state. Although solid sodium chloride is a poor conductor of electricity, when molten the sodium and chloride ions are mobilized, which become charge carriers and allow conduction of electric current.

Some calcium chloride and/or chloridesofbarium (BaCl2) and strontium (SrCl2), and, in some processes, sodium fluoride (NaF)[3] are added to the electrolyte to reduce the temperature required to keep the electrolyte liquid. Sodium chloride (NaCl) melts at 801 °C (1074 Kelvin), but a salt mixture can be kept liquid at a temperature as low as 600 °C at the mixture containing, by weight: 33.2% NaCl and 66.8% CaCl2. If pure sodium chloride is used, a metallic sodium emulsion is formed in the molten NaCl which is impossible to separate. Therefore, one option is to have a NaCl (42%) and CaCl2 (58%) mixture.

The anode reaction is:

2Cl → Cl2 (g) + 2e

The cathode reaction is:

2Na+ + 2e → 2Na (l)

for an overall reaction of

2Na+ + 2Cl → 2Na (l) + Cl2 (g)

The calcium does not enter into the reaction because its reduction potential of -2.87 volts is lower than that of sodium, which is -2.38 volts. Hence the sodium ions are reduced to metallic form in preference to those of calcium.[4] If the electrolyte contained only calcium ions and no sodium, calcium metal would be produced as the cathode product (which indeed is how metallic calcium is produced).

Both the products of the electrolysis, sodium metal and chlorine gas, are less dense than the electrolyte and therefore float to the surface. Perforated iron baffles are arranged in the cell to direct the products into separate chambers without their ever coming into contact with each other.[5]

Although theory predicts that a potential of a little over 4.07 volts should be sufficient to cause the reaction to go forward, in practice potentials of up to 8 volts are used. This is done in order to achieve useful current densities in the electrolyte despite its inherent electrical resistance. The overvoltage and consequent resistive heating contributes to the heat required to keep the electrolyte in a liquid state.

The Downs' process also produces chlorine as a byproduct, although chlorine produced this way accounts for only a small fraction of chlorine produced industrially by other methods.[5]

References[edit]

  1. ^ Downs, James Hamzs "Electrolytic process and cell," Archived 2018-07-25 at the Wayback Machine U.S. Patent no. 1,501,756 (filed: 1922 August 18 ; issued: 1924 July 15).
  • ^ Hardie, D. W. F. (1959). Electrolytic Manufacture of Chemicals from Salt. Oxford, England: Oxford University Press. pp. 14, 65.
  • ^ Keppler, Stephen John; Messing, Thomas A.; Proulx, Kevin Bernard; Jain, Davendra Kumar (2001-05-18). "Molten salt electrolysis of alkali metals, U.S. Patent 6669836". Retrieved 2010-07-17.[permanent dead link]
  • ^ "Sodium Production by Electrowinning". corrosion-doctors.org. Retrieved 2007-12-20.
  • ^ a b Pauling, Linus, General Chemistry, 1970 ed. Dover Publications, pp 539-540

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Downs_cell&oldid=1206650077"

    Categories: 
    Chemical processes
    Electrolytic cells
    Metallurgical processes
    Hidden categories: 
    Webarchive template wayback links
    All articles with dead external links
    Articles with dead external links from February 2024
    Articles with permanently dead external links
     



    This page was last edited on 12 February 2024, at 19:08 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki