Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Processes of motion  





2 Terminus movement and mass balance  





3 Landscape and geology  





4 See also  





5 References  





6 External links  














Glacial motion







Esperanto
فارسی
Italiano
Suomi
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Termini of the glaciers in the Bhutan-Himalaya. Glacial lakes have been rapidly forming on the surface of the debris-covered glaciers in this region during the last few decades. USGS researchers have found a strong correlation between increasing temperatures and glacial retreat in this region.

Glacial motion is the motion of glaciers, which can be likened to rivers of ice. It has played an important role in sculpting many landscapes. Most lakes in the world occupy basins scoured out by glaciers. Glacial motion can be fast (up to 30 metres per day (98 ft/d), observed on Jakobshavn IsbræinGreenland)[1] or slow (0.5 metres per year (20 in/year) on small glaciers or in the center of ice sheets), but is typically around 25 centimetres per day (9.8 in/d).[2]

Processes of motion[edit]

Glacier motion occurs from four processes, all driven by gravity: basal sliding, glacial quakes generating fractional movements of large sections of ice, bed deformation, and internal deformation.

Terminus movement and mass balance [edit]

If a glacier's terminus moves forward faster than it melts, the net result is advance. Glacier retreat occurs when more material ablates from the terminus than is replenished by flow into that region.

Glaciologists consider that trends in mass balance for glaciers are more fundamental than the advance or retreat of the termini of individual glaciers. In the years since 1960, there has been a striking decline in the overall volume of glaciers worldwide. This decline is correlated with global warming.[6] As a glacier thins, due to the loss of mass it will slow down and crevassing will decrease.

Landscape and geology[edit]

Studying glacial motion and the landforms that result requires tools from many different disciplines: physical geography, climatology, and geology are among the areas sometime grouped together and called earth science.

During the Pleistocene (the last ice age), huge sheets of ice called continental glaciers advanced over much of the earth. The movement of these continental glaciers created many now-familiar glacial landforms. As the glaciers were expanded, due to their accumulating weight of snow and ice, they crushed and redistributed surface rocks, creating erosional landforms such as striations, cirques, and hanging valleys. Later, when the glaciers retreated leaving behind their freight of crushed rock and sand, depositional landforms were created, such as moraines, eskers, drumlins, and kames. The stone walls found in New England (northeastern United States) contain many glacial erratics, rocks that were dragged by a glacier many miles from their bedrock origin.

At some point, if an Alpine glacier becomes too thin it will stop moving. This will result in the end of any basal erosion. The stream issuing from the glacier will then become clearer as glacial flour diminishes. Lakes and ponds can also be caused by glacial movement. Kettle lakes form when a retreating glacier leaves behind an underground chunk of ice. Moraine-dammed lakes occur when a stream (or snow runoff) is dammed by glacial till.

See also[edit]

References[edit]

  1. ^ "Table of fastest glacier speeds at". Antarcticglaciers.org. Retrieved 2018-08-16.
  • ^ "Glacier properties Hunter College CUNY lectures". Archived from the original on 2014-02-22. Retrieved 2014-02-06.
  • ^ Surface Melt-Induced Acceleration of Greenland Ice-Sheet Flow Originally published in Science Express on 6 June 2002, Science 12 July 2002: Vol. 297. no. 5579, pp. 218 - 222.
  • ^ Harvard News Office (2006-04-06). "Global warming yields 'glacial earthquakes' in polar areas". News.harvard.edu. Archived from the original on 2013-09-27. Retrieved 2013-09-24.
  • ^ Glacial earthquakes rock Greenland ice sheet 12:36 24 March 2006, NewScientist.com news service
  • ^ "Climate Change 2001: The Scientific Basis". Grida.no. Archived from the original on 2014-09-01. Retrieved 2013-09-24.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Glacial_motion&oldid=1220854468"

    Category: 
    Glaciology
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Articles needing additional references from September 2013
    All articles needing additional references
    Webarchive template wayback links
     



    This page was last edited on 26 April 2024, at 09:43 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki