Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Structure and function  





2 Mechanism  





3 In humans  





4 Clinical significance  





5 Research  





6 See also  





7 References  





8 Further reading  














Inosine-5-monophosphate dehydrogenase






Deutsch
Français
Italiano
Nederlands

Polski
Српски / srpski
Srpskohrvatski / српскохрватски
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inosine 5'-monophosphate dehydrogenase
Structure of IMPDH[1]
Identifiers
EC no.1.1.1.205
CAS no.9028-93-7
Databases
IntEnzIntEnz view
BRENDABRENDA entry
ExPASyNiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDB PDBe PDBsum
Gene OntologyAmiGO / QuickGO
Search
PMCarticles
PubMedarticles
NCBIproteins

Inosine-5′-monophosphate dehydrogenase (IMPDH) is a purine biosynthetic enzyme that catalyzes the nicotinamide adenine dinucleotide (NAD+)-dependent oxidation of inosine monophosphate (IMP) to xanthosine monophosphate (XMP), the first committed and rate-limiting step towards the de novo biosynthesis of guanine nucleotides from IMP. IMPDH is a regulator of the intracellular guanine nucleotide pool, and is therefore important for DNA and RNA synthesis, signal transduction, energy transfer, glycoprotein synthesis, as well as other process that are involved in cellular proliferation.

Structure and function[edit]

IMPDH is a tetrameric enzyme,[2][3][4] composed of monomeric subunits with molecular masses of approximately 55 kDa[5] and generally consist of 400-500 residues.[6]

Visual representation of the active site with IMP (green) and NAD (purple) bound.[7] Key residues (white) of the protein and the catalytic cysteine (cyan) are shown. Dashed lines represent polar contacts.

Most IMPDH monomers contain two domains: a catalytic (β/α)8 barrel domain with an active site located in the loops at the C-terminal end of the barrel, and a subdomain consisting of two, repeated cystathionine beta synthetase (CBS) domains that are inserted within the dehydrogenase sequence.[6][8] Monovalent cations have been shown to activate IMPDH enzymes and may serve to stabilize the conformation of the active-site loop.[9]

The CBS domain is not required for catalytic activity. Mutations within the CBS subdomain or a complete deletion of the domains do not impair the in vitro catalytic activity of IMPDH.[10][11]Anin vivo deletion of the CBS subdomain in E. coli suggests that the domain can act as a negative transregulator of adenine nucleotide synthesis.[12] IMPDH has also been shown to bind nucleic acids,[13] and this function can be impaired by mutations that are located in the subdomain.[14] The CBS subdomain has also been implicated in mediating IMPDH association with polyribosomes,[15] which suggests a potential moonlighting role for IMPDH as a translational regulatory protein.

Drosophila IMPDH has been demonstrated to act as a sequence-specific transcriptional repressor that can reduce the expression of histone genes and E2F.[16] IMPDH localizes to the nucleus at the end of the S phase and nuclear accumulation is mostly restricted to the G2 phase. In addition, metabolic stress has been shown to induce the nuclear localization of IMPDH.[16]

Mechanism[edit]

General mechanism used by the enzyme IMPDH to convert IMP to XMP. Only the purine portion of each molecule is shown.

The overall reaction catalyzed by IMPDH is:[17]

inosine 5'-phosphate + NAD+ + H2O xanthosine 5'-phosphate + NADH + H+

The mechanism of IMPDH involves a sequence of two different chemical reactions: (1) a fast redox reaction involving a hydride transfer to NAD+ which generates NADH and an enzyme-bound XMP intermediate (E-XMP*) and (2) a hydrolysis step that releases XMP from the enzyme. IMP binds to the active site and a conserved cysteine residue attacks the 2-position of the purine ring. A hydride ion is then transferred from the C2 position to NAD+ and the E-XMP* intermediate is formed. NADH dissociates from the enzyme and a mobile active-site flap element moves a conserved catalytic dyad of arginine and threonine into the newly unoccupied NAD binding site. The arginine residue is thought to act as the general base that activates a water molecule for the hydrolysis reaction.[6] Alternatively, molecular mechanics simulations suggest that in conditions where the arginine residue is protonated, the threonine residue is also capable of activating water by accepting a proton from water while transferring its own proton to a nearby residue.[18]

In humans[edit]

IMP dehydrogenase 1
Identifiers
SymbolIMPDH1
Alt. symbolsRP10
NCBI gene3614
HGNC6052
OMIM146690
RefSeqNM_000883
UniProtP20839
Other data
EC number1.1.1.205
LocusChr. 7 q31.3-q32
Search for
StructuresSwiss-model
DomainsInterPro
IMP dehydrogenase 2
IMP dehydrogenase 2 homotetramer, Human
Identifiers
SymbolIMPDH2
Alt. symbolsIMPD2
NCBI gene3615
HGNC6053
OMIM146691
RefSeqNM_000884
UniProtP12268
Other data
EC number1.1.1.205
LocusChr. 3 p21.2
Search for
StructuresSwiss-model
DomainsInterPro

Humans express two distinct isozymes of IMPDH encoded by two distinct genes, IMPDH1 and IMPDH2.

Both isozymes contain 514 residues, have an 84% similarity in peptide sequence, and have similar kinetic properties.[19] Both isozymes are constitutively expressed in most tissues, but IMPDH1 is predominately expressed in the spleen, retina, and peripheral blood leukocytes.[6] IMPDH1 is generally expressed constitutively at low levels, and IMPDH2 is generally upregulated in proliferating cells and neoplastic tissues.[20][21][22] Homozygous IMPDH1 knockout mice demonstrate a mild retinopathy in which a slow, progressive form of retinal degeneration gradually weakens visual transduction,[23] while homozygous IMPDH2 knockout mice display embryonic lethality.[24]

Clinical significance[edit]

Guanine nucleotide synthesis is essential for maintaining normal cell function and growth, and is also important for the maintenance of cell proliferation and immune responses. IMPDH expression is found to be upregulated in some tumor tissues and cell lines.[21] B and T lymphocytes display a dependence on IMPDH for normal activation and function,[25][26] and demonstrate upregulated IMPDH expression.[22] Therefore, IMPDH has been addressed as a drug target for immunosuppressive and cancer chemotherapy.

Mycophenolate is an immunosuppressant that is used to prevent transplant rejection and acts through inhibition of IMPDH.

Mutations in the CBS region of IMPDH1 are associated with the RP10 form of autosomal dominant retinitis pigmentosa and dominant Leber's congenital amaurosis.[14]

Research[edit]

IMPDH inhibitors have been shown to prevent SARS-CoV-2 replication in cells[27] and are being tested in clinical trials for COVID-19.[28]

See also[edit]

References[edit]

  1. ^ Gan L, Seyedsayamdost MR, Shuto S, Matsuda A, Petsko GA, Hedstrom L (February 2003). "The immunosuppressive agent mizoribine monophosphate forms a transition state analogue complex with inosine monophosphate dehydrogenase". Biochemistry. 42 (4): 857–63. doi:10.1021/bi0271401. PMID 12549902.
  • ^ Zhang R, Evans G, Rotella FJ, Westbrook EM, Beno D, Huberman E, Joachimiak A, Collart FR (April 1999). "Characteristics and crystal structure of bacterial inosine-5'-monophosphate dehydrogenase". Biochemistry. 38 (15): 4691–700. CiteSeerX 10.1.1.488.2542. doi:10.1021/bi982858v. PMID 10200156.
  • ^ Whitby FG, Luecke H, Kuhn P, Somoza JR, Huete-Perez JA, Phillips JD, Hill CP, Fletterick RJ, Wang CC (September 1997). "Crystal structure of Tritrichomonas foetus inosine-5'-monophosphate dehydrogenase and the enzyme-product complex". Biochemistry. 36 (35): 10666–74. doi:10.1021/bi9708850. PMID 9271497.
  • ^ Prosise GL, Luecke H (February 2003). "Crystal structures of Tritrichomonasfoetus inosine monophosphate dehydrogenase in complex with substrate, cofactor and analogs: a structural basis for the random-in ordered-out kinetic mechanism". J. Mol. Biol. 326 (2): 517–27. doi:10.1016/S0022-2836(02)01383-9. PMID 12559919.
  • ^ Sintchak MD, Nimmesgern E (May 2000). "The structure of inosine 5'-monophosphate dehydrogenase and the design of novel inhibitors". Immunopharmacology. 47 (2–3): 163–84. doi:10.1016/S0162-3109(00)00193-4. PMID 10878288.
  • ^ a b c d Hedstrom L (July 2009). "IMP dehydrogenase: structure, mechanism, and inhibition". Chemical Reviews. 109 (7): 2903–28. doi:10.1021/cr900021w. PMC 2737513. PMID 19480389.
  • ^ PDB ID: 1NFB, Risal, D., Strickler M,D., Goldstein, B.M.,The Conformation of NAD Bound to Human Inosine Monophosphate Dehydrogenase Type II.
  • ^ Magasanik B, Moyed HS, Gehring LB (May 1957). "Enzymes essential for the biosynthesis of nucleic acid guanine; inosine 5'-phosphate dehydrogenase of Aerobacter aerogenes". J. Biol. Chem. 226 (1): 339–50. doi:10.1016/S0021-9258(18)64835-5. PMID 13428767.
  • ^ Xiang B, Taylor JC, Markham GD (January 1996). "Monovalent cation activation and kinetic mechanism of inosine 5'-monophosphate dehydrogenase". The Journal of Biological Chemistry. 271 (3): 1435–40. doi:10.1074/jbc.271.3.1435. PMID 8576135.
  • ^ Mortimer SE, Hedstrom L (August 2005). "Autosomal dominant retinitis pigmentosa mutations in inosine 5'-monophosphate dehydrogenase type I disrupt nucleic acid binding". The Biochemical Journal. 390 (Pt 1): 41–7. doi:10.1042/BJ20042051. PMC 1184561. PMID 15882147.
  • ^ Nimmesgern E, Black J, Futer O, Fulghum JR, Chambers SP, Brummel CL, Raybuck SA, Sintchak MD (November 1999). "Biochemical analysis of the modular enzyme inosine 5'-monophosphate dehydrogenase". Protein Expression and Purification. 17 (2): 282–9. doi:10.1006/prep.1999.1136. PMID 10545277.
  • ^ Pimkin M, Pimkina J, Markham GD (March 2009). "A regulatory role of the Bateman domain of IMP dehydrogenase in adenylate nucleotide biosynthesis". The Journal of Biological Chemistry. 284 (12): 7960–9. doi:10.1074/jbc.M808541200. PMC 2658089. PMID 19153081.
  • ^ McLean JE, Hamaguchi N, Belenky P, Mortimer SE, Stanton M, Hedstrom L (April 2004). "Inosine 5'-monophosphate dehydrogenase binds nucleic acids in vitro and in vivo". The Biochemical Journal. 379 (Pt 2): 243–51. doi:10.1042/BJ20031585. PMC 1224093. PMID 14766016.
  • ^ a b Bowne SJ, Sullivan LS, Mortimer SE, Hedstrom L, Zhu J, Spellicy CJ, Gire AI, Hughbanks-Wheaton D, Birch DG, Lewis RA, Heckenlively JR, Daiger SP (January 2006). "Spectrum and frequency of mutations in IMPDH1 associated with autosomal dominant retinitis pigmentosa and leber congenital amaurosis". Investigative Ophthalmology & Visual Science. 47 (1): 34–42. doi:10.1167/iovs.05-0868. PMC 2581444. PMID 16384941.
  • ^ Mortimer SE, Xu D, McGrew D, Hamaguchi N, Lim HC, Bowne SJ, Daiger SP, Hedstrom L (December 2008). "IMP dehydrogenase type 1 associates with polyribosomes translating rhodopsin mRNA". The Journal of Biological Chemistry. 283 (52): 36354–60. doi:10.1074/jbc.M806143200. PMC 2605994. PMID 18974094.
  • ^ a b Kozhevnikova EN, van der Knaap JA, Pindyurin AV, Ozgur Z, van Ijcken WF, Moshkin YM, Verrijzer CP (July 2012). "Metabolic enzyme IMPDH is also a transcription factor regulated by cellular state". Molecular Cell. 47 (1): 133–9. doi:10.1016/j.molcel.2012.04.030. PMID 22658723.
  • ^ Collart FR, Huberman E (October 1988). "Cloning and sequence analysis of the human and Chinese hamster inosine-5'-monophosphate dehydrogenase cDNAs". J. Biol. Chem. 263 (30): 15769–72. doi:10.1016/S0021-9258(19)37654-9. PMID 2902093.
  • ^ Min D, Josephine HR, Li H, Lakner C, MacPherson IS, Naylor GJ, Swofford D, Hedstrom L, Yang W (August 2008). "An enzymatic atavist revealed in dual pathways for water activation". PLOS Biology. 6 (8): e206. doi:10.1371/journal.pbio.0060206. PMC 2525682. PMID 18752347.
  • ^ Natsumeda Y, Ohno S, Kawasaki H, Konno Y, Weber G, Suzuki K (March 1990). "Two distinct cDNAs for human IMP dehydrogenase". The Journal of Biological Chemistry. 265 (9): 5292–5. doi:10.1016/S0021-9258(19)34120-1. PMID 1969416.
  • ^ Senda M, Natsumeda Y (1994). "Tissue-differential expression of two distinct genes for human IMP dehydrogenase (E.C.1.1.1.205)". Life Sciences. 54 (24): 1917–26. doi:10.1016/0024-3205(94)90150-3. PMID 7910933.
  • ^ a b Collart FR, Chubb CB, Mirkin BL, Huberman E (October 1992). "Increased inosine-5'-phosphate dehydrogenase gene expression in solid tumor tissues and tumor cell lines". Cancer Research. 52 (20): 5826–8. doi:10.2172/10148922. PMID 1356621.
  • ^ a b Zimmermann AG, Gu JJ, Laliberté J, Mitchell BS (1998). Inosine-5'-monophosphate dehydrogenase: regulation of expression and role in cellular proliferation and T lymphocyte activation. Progress in Nucleic Acid Research and Molecular Biology. Vol. 61. pp. 181–209. doi:10.1016/S0079-6603(08)60827-2. ISBN 978-0-12-540061-9. PMID 9752721.
  • ^ Aherne A, Kennan A, Kenna PF, McNally N, Lloyd DG, Alberts IL, Kiang AS, Humphries MM, Ayuso C, Engel PC, Gu JJ, Mitchell BS, Farrar GJ, Humphries P (March 2004). "On the molecular pathology of neurodegeneration in IMPDH1-based retinitis pigmentosa". Human Molecular Genetics. 13 (6): 641–50. doi:10.1093/hmg/ddh061. PMID 14981049.
  • ^ Gu JJ, Tolin AK, Jain J, Huang H, Santiago L, Mitchell BS (September 2003). "Targeted disruption of the inosine 5'-monophosphate dehydrogenase type I gene in mice". Molecular and Cellular Biology. 23 (18): 6702–12. doi:10.1128/MCB.23.18.6702-6712.2003. PMC 193693. PMID 12944494.
  • ^ Jonsson CA, Carlsten H (January 2003). "Mycophenolic acid inhibits inosine 5'-monophosphate dehydrogenase and suppresses immunoglobulin and cytokine production of B cells". International Immunopharmacology. 3 (1): 31–7. doi:10.1016/s1567-5769(02)00210-2. PMID 12538032.
  • ^ Gu JJ, Stegmann S, Gathy K, Murray R, Laliberte J, Ayscue L, Mitchell BS (August 2000). "Inhibition of T lymphocyte activation in mice heterozygous for loss of the IMPDH II gene". The Journal of Clinical Investigation. 106 (4): 599–606. doi:10.1172/JCI8669. PMC 380246. PMID 10953035.
  • ^ Bojkova, Denisa; Klann, Kevin; Koch, Benjamin; Widera, Marek; Krause, David; Ciesek, Sandra; Cinatl, Jindrich; Münch, Christian (2020-05-14). "Proteomics of SARS-CoV-2-infected host cells reveals therapy targets". Nature. 583 (7816): 469–472. Bibcode:2020Natur.583..469B. doi:10.1038/s41586-020-2332-7. ISSN 1476-4687. PMID 32408336.
  • ^ Clinical trial number NCT04356677 for『Study to Evaluate the Safety and Efficacy of VIRAZOLE® in Hospitalized Adult Participants With Respiratory Distress Due to COVID-19』at ClinicalTrials.gov
  • Further reading[edit]

    • Wang J, Yang JW, Zeevi A, Webber SA, Girnita DM, Selby R, Fu J, Shah T, Pravica V, Hutchinson IV, Burckart GJ (May 2008). "IMPDH1 gene polymorphisms and association with acute rejection in renal transplant patients". Clin. Pharmacol. Ther. 83 (5): 711–7. doi:10.1038/sj.clpt.6100347. PMID 17851563. S2CID 12718828.
    This article incorporates text from the public domain Pfam and InterPro: IPR001093

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Inosine-5′-monophosphate_dehydrogenase&oldid=1209776688"

    Categories: 
    Genes on human chromosome 7
    Genes on human chromosome 3
    EC 1.1.1
    NADH-dependent enzymes
    Enzymes of known structure
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Protein pages needing a picture
     



    This page was last edited on 23 February 2024, at 14:49 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki