Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Partial results  





2 A simple example: cyclic groups  



2.1  Worked example: the cyclic group of order three  







3 Symmetric and alternating groups  



3.1  Alternating groups  



3.1.1  Odd Degree  





3.1.2  Even Degree  









4 Rigid groups  





5 A construction with an elliptic modular function  





6 See also  





7 Notes  





8 References  





9 External links  














Inverse Galois problem






العربية
Español
Français
Italiano

Português
Русский
Svenska
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Unsolved problem in mathematics:

Is every finite group the Galois group of a Galois extension of the rational numbers?

InGalois theory, the inverse Galois problem concerns whether or not every finite group appears as the Galois group of some Galois extension of the rational numbers . This problem, first posed in the early 19th century,[1] is unsolved.

There are some permutation groups for which generic polynomials are known, which define all algebraic extensionsof having a particular group as Galois group. These groups include all of degree no greater than 5. There also are groups known not to have generic polynomials, such as the cyclic group of order 8.

More generally, let G be a given finite group, and K a field. If there is a Galois extension field L/K whose Galois group is isomorphictoG, one says that G is realizable over K.

Partial results[edit]

Many cases are known. It is known that every finite group is realizable over any function field in one variable over the complex numbers , and more generally over function fields in one variable over any algebraically closed fieldofcharacteristic zero. Igor Shafarevich showed that every finite solvable group is realizable over .[2] It is also known that every simple sporadic group, except possibly the Mathieu group M23, is realizable over .[3]

David Hilbert showed that this question is related to a rationality question for G:

IfK is any extension of on which G acts as an automorphism group, and the invariant field KG is rational over , then G is realizable over .

Here rational means that it is a purely transcendental extension of , generated by an algebraically independent set. This criterion can for example be used to show that all the symmetric groups are realizable.

Much detailed work has been carried out on the question, which is in no sense solved in general. Some of this is based on constructing G geometrically as a Galois covering of the projective line: in algebraic terms, starting with an extension of the field ofrational functions in an indeterminate t. After that, one applies Hilbert's irreducibility theorem to specialise t, in such a way as to preserve the Galois group.

All permutation groups of degree 16 or less are known to be realizable over ;[4] the group PSL(2,16):2 of degree 17 may not be.[5]

All 13 non-abelian simple groups smaller than PSL(2,25) (order 7800) are known to be realizable over .[6]

A simple example: cyclic groups[edit]

It is possible, using classical results, to construct explicitly a polynomial whose Galois group over is the cyclic group Z/nZ for any positive integer n. To do this, choose a prime p such that p ≡ 1 (mod n); this is possible by Dirichlet's theorem. Let Q(μ) be the cyclotomic extensionof generated by μ, where μ is a primitive p-th root of unity; the Galois group of Q(μ)/Q is cyclic of order p − 1.

Since n divides p − 1, the Galois group has a cyclic subgroup H of order (p − 1)/n. The fundamental theorem of Galois theory implies that the corresponding fixed field, F = Q(μ)H, has Galois group Z/nZ over . By taking appropriate sums of conjugates of μ, following the construction of Gaussian periods, one can find an element αofF that generates F over , and compute its minimal polynomial.

This method can be extended to cover all finite abelian groups, since every such group appears in fact as a quotient of the Galois group of some cyclotomic extension of . (This statement should not though be confused with the Kronecker–Weber theorem, which lies significantly deeper.)

Worked example: the cyclic group of order three[edit]

For n = 3, we may take p = 7. Then Gal(Q(μ)/Q) is cyclic of order six. Let us take the generator η of this group which sends μtoμ3. We are interested in the subgroup H = {1, η3} of order two. Consider the element α = μ + η3(μ). By construction, α is fixed by H, and only has three conjugates over :

α = η0(α) = μ + μ6,
β = η1(α) = μ3 + μ4,
γ = η2(α) = μ2 + μ5.

Using the identity:

1 + μ + μ2 + ⋯ + μ6 = 0,

one finds that

α + β + γ = −1,
αβ + βγ + γα = −2,
αβγ = 1.

Therefore α is a root of the polynomial

(xα)(xβ)(xγ) = x3 + x2 − 2x − 1,

which consequently has Galois group Z/3Z over .

Symmetric and alternating groups[edit]

Hilbert showed that all symmetric and alternating groups are represented as Galois groups of polynomials with rational coefficients.

The polynomial xn + ax + b has discriminant

We take the special case

f(x, s) = xnsxs.

Substituting a prime integer for sinf(x, s) gives a polynomial (called a specializationoff(x, s)) that by Eisenstein's criterionisirreducible. Then f(x, s) must be irreducible over . Furthermore, f(x, s) can be written

and f(x, 1/2) can be factored to:

whose second factor is irreducible (but not by Eisenstein's criterion). Only the reciprocal polynomial is irreducible by Eisenstein's criterion. We have now shown that the group Gal(f(x, s)/Q(s))isdoubly transitive.

We can then find that this Galois group has a transposition. Use the scaling (1 − n)x = ny to get

and with

we arrive at:

g(y, t) = ynnty + (n − 1)t

which can be arranged to

yny − (n − 1)(y − 1) + (t − 1)(−ny + n − 1).

Then g(y, 1) has 1 as a double zero and its other n − 2 zeros are simple, and a transposition in Gal(f(x, s)/Q(s)) is implied. Any finite doubly transitive permutation group containing a transposition is a full symmetric group.

Hilbert's irreducibility theorem then implies that an infinite set of rational numbers give specializations of f(x, t) whose Galois groups are Sn over the rational field . In fact this set of rational numbers is dense in .

The discriminant of g(y, t) equals

and this is not in general a perfect square.

Alternating groups[edit]

Solutions for alternating groups must be handled differently for odd and even degrees.

Odd Degree[edit]

Let

Under this substitution the discriminant of g(y, t) equals

which is a perfect square when n is odd.

Even Degree[edit]

Let:

Under this substitution the discriminant of g(y, t) equals:

which is a perfect square when n is even.

Again, Hilbert's irreducibility theorem implies the existence of infinitely many specializations whose Galois groups are alternating groups.

Rigid groups[edit]

Suppose that C1, …, Cn are conjugacy classes of a finite group G, and A be the set of n-tuples (g1, …, gn)ofG such that gi is in Ci and the product g1gn is trivial. Then A is called rigid if it is nonempty, G acts transitively on it by conjugation, and each element of A generates G.

Thompson (1984) showed that if a finite group G has a rigid set then it can often be realized as a Galois group over a cyclotomic extension of the rationals. (More precisely, over the cyclotomic extension of the rationals generated by the values of the irreducible characters of G on the conjugacy classes Ci.)

This can be used to show that many finite simple groups, including the monster group, are Galois groups of extensions of the rationals. The monster group is generated by a triad of elements of orders 2, 3, and 29. All such triads are conjugate.

The prototype for rigidity is the symmetric group Sn, which is generated by an n-cycle and a transposition whose product is an (n − 1)-cycle. The construction in the preceding section used these generators to establish a polynomial's Galois group.

A construction with an elliptic modular function[edit]

Let n >1 be any integer. A lattice Λ in the complex plane with period ratio τ has a sublattice Λ′ with period ratio . The latter lattice is one of a finite set of sublattices permuted by the modular group PSL(2, Z), which is based on changes of basis for Λ. Let j denote the elliptic modular functionofFelix Klein. Define the polynomial φn as the product of the differences (Xji)) over the conjugate sublattices. As a polynomial in X, φn has coefficients that are polynomials over inj(τ).

On the conjugate lattices, the modular group acts as PGL(2, Z/nZ). It follows that φn has Galois group isomorphic to PGL(2, Z/nZ) over .

Use of Hilbert's irreducibility theorem gives an infinite (and dense) set of rational numbers specializing φn to polynomials with Galois group PGL(2, Z/nZ) over . The groups PGL(2, Z/nZ) include infinitely many non-solvable groups.

See also[edit]

Notes[edit]

  1. ^ "Mathematical Sciences Research Institute Publications 45" (PDF). MSRI.
  • ^ Igor R. Shafarevich, The imbedding problem for splitting extensions, Dokl. Akad. Nauk SSSR 120 (1958), 1217-1219.
  • ^ p. 5 of Jensen et al., 2002
  • ^ "Home". galoisdb.math.upb.de.
  • ^ "Choose a group".
  • ^ Malle and Matzat (1999), pp. 403-424
  • References[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Inverse_Galois_problem&oldid=1186413149"

    Categories: 
    Galois theory
    Unsolved problems in mathematics
    Hidden categories: 
    Articles with J9U identifiers
    Articles with LCCN identifiers
     



    This page was last edited on 22 November 2023, at 23:58 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki