Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Properties  





2 Computation  





3 Applications  





4 See also  





5 References  














John ellipsoid






Deutsch
Polski
Русский
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Outer Löwner–John ellipsoid containing a set of a points in R2

Inmathematics, the John ellipsoidorLöwner–John ellipsoid E(K) associated to a convex body Kinn-dimensional Euclidean space Rn can refer to the n-dimensional ellipsoid of maximal volume contained within K or the ellipsoid of minimal volume that contains K.

Often, the minimal volume ellipsoid is called the Löwner ellipsoid, and the maximal volume ellipsoid is called the John ellipsoid (although John worked with the minimal volume ellipsoid in its original paper).[1] One can also refer to the minimal volume circumscribed ellipsoid as the outer Löwner–John ellipsoid, and the maximum volume inscribed ellipsoid as the inner Löwner–John ellipsoid.[2]

The German-American mathematician Fritz John proved in 1948 that each convex body in Rn is circumscribed by a unique ellipsoid of minimal volume, and that the dilation of this ellipsoid by factor 1/n is contained inside the convex body.[3] That is, the outer Lowner-John ellipsoid is larger than the inner one by a factor of at most n. For a balanced body, this factor can be reduced to .

Properties[edit]

The inner Löwner–John ellipsoid E(K) of a convex body K ⊂ Rn is a closed unit ball BinRn if and only if B ⊆ K and there exists an integer m ≥ n and, for i = 1, ..., m, real numbers ci > 0 and unit vectors ui ∈ Sn−1 ∩ ∂K such that[4]

and, for all x ∈ Rn

Computation[edit]

In general, computing the John ellipsoid of a given convex body is a hard problem. However, for some specific cases, explicit formulas are known. Some cases are particularly important for the ellipsoid method.[5]: 70–73 

Let E(A,a) be an ellipsoid in Rn, defined by a matrix A and center a. Let c be a nonzero vector in Rn. Let E'(A,a,c) be the half-ellipsoid derived by cutting E(A,a) at its center using the hyperplane defined by c. Then, the Lowner-John ellipsoid of E'(A,a,c) is an ellipsoid E(A',a') defined by:

where b is a vector defined by:

Similarly, there are formulas for other sections of ellipsoids, not necessarily through its center.

Applications[edit]

The computation of Löwner–John ellipsoids (and in more general, the computation of minimal-volume polynomial level sets enclosing a set) has found many applications in control and robotics.[6] In particular, computing Löwner–John ellipsoids has applications in obstacle collision detection for robotic systems, where the distance between a robot and its surrounding environment is estimated using a best ellipsoid fit.[7]

Löwner–John ellipsoids has also been used to approximate the optimal policy in portfolio optimization problems with transaction costs.[8]

See also[edit]

References[edit]

  1. ^ Güler, Osman; Gürtuna, Filiz (2012). "Symmetry of convex sets and its applications to the extremal ellipsoids of convex bodies". Optimization Methods and Software. 27 (4–5): 735–759. CiteSeerX 10.1.1.664.6067. doi:10.1080/10556788.2011.626037. ISSN 1055-6788. S2CID 2971340.
  • ^ Ben-Tal, A. (2001). Lectures on modern convex optimization : analysis, algorithms, and engineering applications. Nemirovskiĭ, Arkadiĭ Semenovich. Philadelphia, PA: Society for Industrial and Applied Mathematics. ISBN 0-89871-491-5. OCLC 46538510.
  • ^ John, Fritz. "Extremum problems with inequalities as subsidiary conditions". Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, 187—204. Interscience Publishers, Inc., New York, N. Y., 1948. OCLC 1871554 MR30135
  • ^ Ball, Keith M. (1992). "Ellipsoids of maximal volume in convex bodies". Geom. Dedicata. 41 (2): 241–250. arXiv:math/9201217. doi:10.1007/BF00182424. ISSN 0046-5755. S2CID 18330466.
  • ^ Grötschel, Martin; Lovász, László; Schrijver, Alexander (1993), Geometric algorithms and combinatorial optimization, Algorithms and Combinatorics, vol. 2 (2nd ed.), Springer-Verlag, Berlin, doi:10.1007/978-3-642-78240-4, ISBN 978-3-642-78242-8, MR 1261419
  • ^ Dabbene, Fabrizio; Henrion, Didier; Lagoa, Constantino M. (2017). "Simple approximations of semialgebraic sets and their applications to control". Automatica. 78: 110–118. arXiv:1509.04200. doi:10.1016/j.automatica.2016.11.021. S2CID 5778355.
  • ^ Rimon, Elon; Boyd, Stephen (1997). "Obstacle Collision Detection Using Best Ellipsoid Fit". Journal of Intelligent and Robotic Systems. 18 (2): 105–126. doi:10.1023/A:1007960531949. S2CID 10505238.
  • ^ Shen, Weiwei; Wang, Jun (2015). "Transaction Costs-Aware Portfolio Optimization via Fast Lowner-John Ellipsoid Approximation" (PDF). Proceedings of the AAAI Conference on Artificial Intelligence. 29: 1854–1860. doi:10.1609/aaai.v29i1.9453. S2CID 14746495. Archived from the original (PDF) on 2017-01-16.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=John_ellipsoid&oldid=1222344816"

    Categories: 
    Convex geometry
    Multi-dimensional geometry
    Quadrics
     



    This page was last edited on 5 May 2024, at 13:39 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki