Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definitions  





2 Properties  





3 See also  





4 Citations  





5 References  














Proper convex function






Français

Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inmathematical analysis, in particular the subfields of convex analysis and optimization, a proper convex function is an extended real-valued convex function with a non-empty domain, that never takes on the value and also is not identically equal to

Inconvex analysis and variational analysis, a point (in the domain) at which some given function is minimized is typically sought, where is valued in the extended real number line [1] Such a point, if it exists, is called a global minimum point of the function and its value at this point is called the global minimum (value) of the function. If the function takes as a value then is necessarily the global minimum value and the minimization problem can be answered; this is ultimately the reason why the definition of "proper" requires that the function never take as a value. Assuming this, if the function's domain is empty or if the function is identically equal to then the minimization problem once again has an immediate answer. Extended real-valued function for which the minimization problem is not solved by any one of these three trivial cases are exactly those that are called proper. Many (although not all) results whose hypotheses require that the function be proper add this requirement specifically to exclude these trivial cases.

If the problem is instead a maximization problem (which would be clearly indicated, such as by the function being concave rather than convex) then the definition of "proper" is defined in an analogous (albeit technically different) manner but with the same goal: to exclude cases where the maximization problem can be answered immediately. Specifically, a concave function is called proper if its negation which is a convex function, is proper in the sense defined above.

Definitions[edit]

Suppose that is a function taking values in the extended real number line If is a convex function or if a minimum point of is being sought, then is called properif

     for every

and if there also exists some point such that

That is, a function is proper if it never attains the value and its effective domain is nonempty.[2] This means that there exists some at which and is also never equal to Convex functions that are not proper are called improper convex functions.[3]

Aproper concave function is by definition, any function such that is a proper convex function. Explicitly, if is a concave function or if a maximum point of is being sought, then is called proper if its domain is not empty, it never takes on the value and it is not identically equal to

Properties[edit]

For every proper convex function there exist some and such that

for every

The sum of two proper convex functions is convex, but not necessarily proper.[4] For instance if the sets and are non-empty convex sets in the vector space then the characteristic functions and are proper convex functions, but if then is identically equal to

The infimal convolution of two proper convex functions is convex but not necessarily proper convex.[5]

See also[edit]

Citations[edit]

  1. ^ Rockafellar & Wets 2009, pp. 1–28.
  • ^ Aliprantis, C.D.; Border, K.C. (2007). Infinite Dimensional Analysis: A Hitchhiker's Guide (3 ed.). Springer. p. 254. doi:10.1007/3-540-29587-9. ISBN 978-3-540-32696-0.
  • ^ Rockafellar, R. Tyrrell (1997) [1970]. Convex Analysis. Princeton, NJ: Princeton University Press. p. 24. ISBN 978-0-691-01586-6.
  • ^ Boyd, Stephen (2004). Convex Optimization. Cambridge, UK: Cambridge University Press. p. 79. ISBN 978-0-521-83378-3.
  • ^ Ioffe, Aleksandr Davidovich; Tikhomirov, Vladimir Mikhaĭlovich (2009), Theory of extremal problems, Studies in Mathematics and its Applications, vol. 6, North-Holland, p. 168, ISBN 9780080875279.
  • References[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Proper_convex_function&oldid=1188979850"

    Categories: 
    Convex analysis
    Types of functions
     



    This page was last edited on 8 December 2023, at 22:47 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki