Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition  



1.1  Definition 1 (The original definition)  





1.2  Definition 2 (Definition with geometric interpretation)  





1.3  Proof of Equivalence  







2 Properties  



2.1  Property 1  





2.2  Property 2  





2.3  Property 3  





2.4  Property 4  





2.5  Property 5  







3 References  





4 Further reading  














K-convex function







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


K-convex functions, first introduced by Scarf,[1] are a special weakening of the concept of convex function which is crucial in the proof of the optimality of the policy in inventory control theory. The policy is characterized by two numbers s and S, , such that when the inventory level falls below level s, an order is issued for a quantity that brings the inventory up to level S, and nothing is ordered otherwise. Gallego and Sethi [2] have generalized the concept of K-convexity to higher dimensional Euclidean spaces.

Definition[edit]

Two equivalent definitions are as follows:

Definition 1 (The original definition)[edit]

Let K be a non-negative real number. A function isK-convex if

for any and .

Definition 2 (Definition with geometric interpretation)[edit]

A function isK-convex if

for all , where .

This definition admits a simple geometric interpretation related to the concept of visibility.[3] Let . A point is said to be visible from if all intermediate points lie below the line segment joining these two points. Then the geometric characterization of K-convexity can be obtain as:

A function isK-convex if and only if is visible from for all .

Proof of Equivalence[edit]

It is sufficient to prove that the above definitions can be transformed to each other. This can be seen by using the transformation

Properties[edit]

[4]

Property 1[edit]

IfisK-convex, then it is L-convex for any . In particular, if is convex, then it is also K-convex for any .

Property 2[edit]

IfisK-convex and isL-convex, then for is-convex.

Property 3[edit]

IfisK-convex and is a random variable such that for all , then is also K-convex.

Property 4[edit]

IfisK-convex, restriction of on any convex set isK-convex.

Property 5[edit]

If is a continuous K-convex function and as, then there exit scalars and with such that

References[edit]

  1. ^ Scarf, H. (1960). The Optimality of (S, s) Policies in the Dynamic Inventory Problem. Stanford, CA: Stanford University Press. p. Chapter 13.
  • ^ Gallego, G. and Sethi, S. P. (2005). K-convexity in ℜn. Journal of Optimization Theory & Applications, 127(1):71-88.
  • ^ Kolmogorov, A. N.; Fomin, S. V. (1970). Introduction to Real Analysis. New York: Dover Publications Inc.
  • ^ Sethi S P, Cheng F. Optimality of (s, S) Policies in Inventory Models with Markovian Demand. INFORMS, 1997.
  • Further reading[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=K-convex_function&oldid=1219183676"

    Categories: 
    Convex analysis
    Types of functions
     



    This page was last edited on 16 April 2024, at 06:45 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki