Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Structure  





2 Preparation  





3 Use in rechargeable batteries  





4 See also  





5 References  





6 External links  














Lithium cobalt oxide






Afrikaans
العربية
تۆرکجه
Català
Deutsch
Español
فارسی
Français


Polski
Русский
Simple English
Српски / srpski
Srpskohrvatski / српскохрватски
Suomi
ி
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Lithium cobalt oxide[1]

__ Li+     __ Co3+     __ O2−

Names
IUPAC name

lithium cobalt(III) oxide

Other names

lithium cobaltite

Identifiers

CAS Number

3D model (JSmol)

ChemSpider
ECHA InfoCard 100.032.135 Edit this at Wikidata
EC Number
  • 235-362-0

PubChem CID

CompTox Dashboard (EPA)

  • InChI=1S/Co.Li.2O/q+3;+1;2*-2

    Key: LSZLYXRYFZOJRA-UHFFFAOYSA-N

  • [Li+].[O-2].[Co+3].[O-2]

Properties

Chemical formula

LiCoO
2
Molar mass 97.87 g mol−1
Appearance dark blue or bluish-gray crystalline solid
Hazards
Occupational safety and health (OHS/OSH):

Main hazards

harmful
GHS labelling:

Pictograms

GHS07: Exclamation markGHS08: Health hazard

Signal word

Danger

Hazard statements

H317, H350, H360

Precautionary statements

P201, P202, P261, P272, P280, P281, P302+P352, P308+P313, P321, P333+P313, P363, P405, P501

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

☒N verify (what is checkY☒N ?)

Infobox references

Lithium cobalt oxide, sometimes called lithium cobaltate[2]orlithium cobaltite,[3] is a chemical compound with formula LiCoO
2
. The cobalt atoms are formally in the +3 oxidation state, hence the IUPAC name lithium cobalt(III) oxide.

Lithium cobalt oxide is a dark blue or bluish-gray crystalline solid,[4] and is commonly used in the positive electrodesoflithium-ion batteries.

Structure[edit]

The structure of LiCoO
2
has been studied with numerous techniques including x-ray diffraction, electron microscopy, neutron powder diffraction, and EXAFS.[5]

The solid consists of layers of monovalent lithium cations (Li+
) that lie between extended anionic sheets of cobalt and oxygen atoms, arranged as edge-sharing octahedra, with two faces parallel to the sheet plane.[6] The cobalt atoms are formally in the trivalent oxidation state (Co3+
) and are sandwiched between two layers of oxygen atoms (O2−
).

In each layer (cobalt, oxygen, or lithium), the atoms are arranged in a regular triangular lattice. The lattices are offset so that the lithium atoms are farthest from the cobalt atoms, and the structure repeats in the direction perpendicular to the planes every three cobalt (or lithium) layers. The point group symmetry is inHermann-Mauguin notation, signifying a unit cell with threefold improper rotational symmetry and a mirror plane. The threefold rotational axis (which is normal to the layers) is termed improper because the triangles of oxygen (being on opposite sides of each octahedron) are anti-aligned.[7]

Preparation[edit]

Fully reduced lithium cobalt oxide can be prepared by heating a stoichiometric mixture of lithium carbonate Li
2
CO
3
and cobalt(II,III) oxide Co
3
O
4
or metallic cobalt at 600–800 °C, then annealing the product at 900 °C for many hours, all under an oxygen atmosphere.[6][3][7]

LCO Synthesis
Nanometer-sized and sub-micrometer sized LCO synthesis route[8]

Nanometer-size particles more suitable for cathode use can also be obtained by calcination of hydrated cobalt oxalate β-CoC
2
O
4
·2H
2
O
, in the form of rod-like crystals about 8 μm long and 0.4 μm wide, with lithium hydroxide LiOH, up to 750–900 °C.[9]

A third method uses lithium acetate, cobalt acetate, and citric acid in equal molar amounts, in water solution. Heating at 80 °C turns the mixture into a viscous transparent gel. The dried gel is then ground and heated gradually to 550 °C.[10]

Use in rechargeable batteries[edit]

The usefulness of lithium cobalt oxide as an intercalation electrode was discovered in 1980 by an Oxford University research group led by John B. Goodenough and Tokyo University's Koichi Mizushima.[11]

The compound is now used as the cathode in some rechargeable lithium-ion batteries, with particle sizes ranging from nanometerstomicrometers.[10][9] During charging, the cobalt is partially oxidized to the +4 state, with some lithium ions moving to the electrolyte, resulting in a range of compounds Li
x
CoO
2
with 0 < x < 1.[3]

Batteries produced with LiCoO
2
cathodes have very stable capacities, but have lower capacities and power than those with cathodes based on (especially nickel-rich) nickel-cobalt-aluminum (NCA) or nickel-cobalt-manganese (NCM) oxides.[12] Issues with thermal stability are better for LiCoO
2
cathodes than other nickel-rich chemistries although not significantly. This makes LiCoO
2
batteries susceptible to thermal runaway in cases of abuse such as high temperature operation (>130 °C) or overcharging. At elevated temperatures, LiCoO
2
decomposition generates oxygen, which then reacts with the organic electrolyte of the cell, this reaction is often seen in Lithium-Ion batteries where the battery becomes highly volatile and must be recycled in a safe manner. The decomposition of LiCoO2 is a safety concern due to the magnitude of this highly exothermic reaction, which can spread to adjacent cells or ignite nearby combustible material.[13] In general, this is seen for many lithium ion battery cathodes.

The delithiation process is usually by chemical means,[14] although a novel physical process has been developed based on ion sputtering and annealing cycles,[15] leaving the material properties intact.

See also[edit]

References[edit]

  1. ^ 442704 - Lithium cobalt(III) oxide (2012-09-14). "Sigma-Aldrich product page". Sigmaaldrich.com. Retrieved 2013-01-21.{{cite web}}: CS1 maint: numeric names: authors list (link)
  • ^ A. L. Emelina, M. A. Bykov, M. L. Kovba, B. M. Senyavin, E. V. Golubina (2011), "Thermochemical properties of lithium cobaltate". Russian Journal of Physical Chemistry, volume 85, issue 3, pages 357–363; doi:10.1134/S0036024411030071
  • ^ a b c Ondřej Jankovský, Jan Kovařík, Jindřich Leitner, Květoslav Růžička, David Sedmidubský (2016) "Thermodynamic properties of stoichiometric lithium cobaltite LiCoO2". Thermochimica Acta, volume 634, pages 26-30. doi:10.1016/j.tca.2016.04.018
  • ^ LinYi Gelon New Battery Materials Co., Ltd, "Lithium Cobalt Oxide (LiCoO2) for lithium ion battery ". Catalog entry, accessed on 2018-04-10,
  • ^ I. Nakai; K. Takahashi; Y. Shiraishi; T. Nakagome; F. Izumi; Y. Ishii; F. Nishikawa; T. Konishi (1997). "X-ray absorption fine structure and neutron diffraction analyses of de-intercalation behavior in the LiCoO2 and LiNiO2 systems". Journal of Power Sources. 68 (2): 536–539. Bibcode:1997JPS....68..536N. doi:10.1016/S0378-7753(97)02598-6.
  • ^ a b Shao-Horn, Yang; Croguennec, Laurence; Delmas, Claude; Nelson, E. Chris; O'Keefe, Michael A. (July 2003). "Atomic resolution of lithium ions in LiCoO
    2
    "
    . Nature Materials. 2 (7): 464–467. doi:10.1038/nmat922. PMID 12806387. S2CID 34357573.
  • ^ a b H. J. Orman & P. J. Wiseman (January 1984). "Cobalt(III) lithium oxide, CoLiO
    2
    : structure refinement by powder neutron diffraction". Acta Crystallographica Section C. 40 (1): 12–14. doi:10.1107/S0108270184002833.
  • ^ Qi, Zhaoxiang; Koenig, Gary M. (2016-08-16). "High-Performance LiCoO2Sub-Micrometer Materials from Scalable Microparticle Template Processing". ChemistrySelect. 1 (13): 3992–3999. doi:10.1002/slct.201600872. ISSN 2365-6549.
  • ^ a b Qi, Zhaoxiang (August 2016). "High-Performance LiCoO2 Sub-Micrometer Materials from Scalable Microparticle Template Processing". ChemistrySelect. 1 (13): 3992–3999. doi:10.1002/slct.201600872.
  • ^ a b Tang, W.; Liu, L. L.; Tian, S.; Li, L.; Yue, Y. B.; Wu, Y. P.; Guan, S. Y.; Zhu, K. (2010-11-01). "Nano-LiCoO2 as cathode material of large capacity and high rate capability for aqueous rechargeable lithium batteries". Electrochemistry Communications. 12 (11): 1524–1526. doi:10.1016/j.elecom.2010.08.024.
  • ^ K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough (1980), "Li
    x
    CoO
    2
    (0<x<1): A New Cathode Material for Batteries of High Energy Density". Materials Research Bulletin, volume 15, pages 783–789. doi:10.1016/0025-5408(80)90012-4
  • ^ Oswald, Stefan; Gasteiger, Hubert A. (2023-03-01). "The Structural Stability Limit of Layered Lithium Transition Metal Oxides Due to Oxygen Release at High State of Charge and Its Dependence on the Nickel Content". Journal of the Electrochemical Society. 170 (3): 030506. doi:10.1149/1945-7111/acbf80. ISSN 0013-4651. S2CID 258406065.
  • ^ Doughty, Daniel; Pesaran, Ahmad. "Vehicle Battery Safety Roadmap Guidance" (PDF). National Renewable Energy Laboratory. Retrieved 19 January 2013.
  • ^ Aurbach, D (2002-06-02). "A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions". Solid State Ionics. 148 (3–4): 405–416. doi:10.1016/S0167-2738(02)00080-2.
  • ^ Salagre, Elena; Segovia, Pilar; González-Barrio, Miguel Ángel; Jugovac, Matteo; Moras, Paolo; Pis, Igor; Bondino, Federica; Pearson, Justin; Wang, Richmond Shiwei; Takeuchi, Ichiro; Fuller, Elliot J.; Talin, Alec A.; Mascaraque, Arantzazu; Michel, Enrique G. (2023-08-02). "Physical Delithiation of Epitaxial LiCoO 2 Battery Cathodes as a Platform for Surface Electronic Structure Investigation". ACS Applied Materials & Interfaces. 15 (30): 36224–36232. doi:10.1021/acsami.3c06147. hdl:10486/708446. ISSN 1944-8244.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Lithium_cobalt_oxide&oldid=1209957343"

    Categories: 
    Cobalt(III) compounds
    Lithium compounds
    Oxides
    Hidden categories: 
    CS1 maint: numeric names: authors list
    Articles without InChI source
    Articles without EBI source
    Articles without KEGG source
    Articles without UNII source
    ECHA InfoCard ID from Wikidata
    Chembox having GHS data
    Articles containing unverified chemical infoboxes
    Articles with short description
    Short description matches Wikidata
    Webarchive template wayback links
     



    This page was last edited on 24 February 2024, at 09:16 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki