Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 The dyadic decomposition of a function  





2 The LittlewoodPaley gfunction  





3 Applications  





4 References  














LittlewoodPaley theory






Deutsch
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inharmonic analysis, a field within mathematics, Littlewood–Paley theory is a theoretical framework used to extend certain results about L2 functions to Lp functions for 1 < p < ∞. It is typically used as a substitute for orthogonality arguments which only apply to Lp functions when p = 2. One implementation involves studying a function by decomposing it in terms of functions with localized frequencies, and using the Littlewood–Paley g-function to compare it with its Poisson integral. The 1-variable case was originated by J. E. Littlewood and R. Paley (1931, 1937, 1938) and developed further by Polish mathematicians A. Zygmund and J. Marcinkiewicz in the 1930s using complex function theory (Zygmund 2002, chapters XIV, XV). E. M. Stein later extended the theory to higher dimensions using real variable techniques.

The dyadic decomposition of a function

[edit]

Littlewood–Paley theory uses a decomposition of a function f into a sum of functions fρ with localized frequencies. There are several ways to construct such a decomposition; a typical method is as follows.

Iff(x) is a function on R, and ρ is a measurable set (in the frequency space) with characteristic function , then fρ is defined via its Fourier transform

.

Informally, fρ is the piece of f whose frequencies lie in ρ.

If Δ is a collection of measurable sets which (up to measure 0) are disjoint and have union on the real line, then a well behaved function f can be written as a sum of functions fρ for ρ ∈ Δ.

When Δ consists of the sets of the form

for k an integer, this gives a so-called "dyadic decomposition" of f : Σρ fρ.

There are many variations of this construction; for example, the characteristic function of a set used in the definition of fρ can be replaced by a smoother function.

A key estimate of Littlewood–Paley theory is the Littlewood–Paley theorem, which bounds the size of the functions fρ in terms of the size of f. There are many versions of this theorem corresponding to the different ways of decomposing f. A typical estimate is to bound the Lp norm of (Σρ |fρ|2)1/2 by a multiple of the Lp norm of f.

In higher dimensions it is possible to generalize this construction by replacing intervals with rectangles with sides parallel to the coordinate axes. Unfortunately these are rather special sets, which limits the applications to higher dimensions.

The Littlewood–Paley g function

[edit]

The g function is a non-linear operator on Lp(Rn) that can be used to control the Lp norm of a function f in terms of its Poisson integral. The Poisson integral u(x,y) of f is defined for y > 0 by

where the Poisson kernel P on the upper half space is given by

The Littlewood–Paley g function g(f) is defined by

A basic property of g is that it approximately preserves norms. More precisely, for 1 < p < ∞, the ratio of the Lp norms of f and g(f) is bounded above and below by fixed positive constants depending on n and p but not on f.

Applications

[edit]

One early application of Littlewood–Paley theory was the proof that if Sn are the partial sums of the Fourier series of a periodic Lp function (p > 1) and nj is a sequence satisfying nj+1/nj > q for some fixed q > 1, then the sequence Snj converges almost everywhere. This was later superseded by the Carleson–Hunt theorem showing that Sn itself converges almost everywhere.

Littlewood–Paley theory can also be used to prove the Marcinkiewicz multiplier theorem.

References

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Littlewood–Paley_theory&oldid=1170425884"

Category: 
Fourier analysis
 



This page was last edited on 15 August 2023, at 00:31 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki