Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 The algorithm  





2 Properties  





3 Applications  





4 Extensions  





5 See also  





6 References  














Matching pursuit






Polski

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


A signal and its wavelet representation. Each pixel in the heat map (top) represents an atom (a wavelet centered in time according to the horizontal position and with frequency corresponding to height). The color of the pixel gives the inner product of the corresponding wavelet atom with the signal (bottom). Matching pursuit should represent the signal by just a few atoms, such as the three at the centers of the clearly visible ellipses.

Matching pursuit (MP) is a sparse approximation algorithm which finds the "best matching" projections of multidimensional data onto the span of an over-complete (i.e., redundant) dictionary . The basic idea is to approximately represent a signal from Hilbert space as a weighted sum of finitely many functions (called atoms) taken from . An approximation with atoms has the form

where is the th column of the matrix and is the scalar weighting factor (amplitude) for the atom . Normally, not every atom in will be used in this sum. Instead, matching pursuit chooses the atoms one at a time in order to maximally (greedily) reduce the approximation error. This is achieved by finding the atom that has the highest inner product with the signal (assuming the atoms are normalized), subtracting from the signal an approximation that uses only that one atom, and repeating the process until the signal is satisfactorily decomposed, i.e., the norm of the residual is small, where the residual after calculating and is denoted by

.

If converges quickly to zero, then only a few atoms are needed to get a good approximation to . Such sparse representations are desirable for signal coding and compression. More precisely, the sparsity problem that matching pursuit is intended to approximately solve is

where is the pseudo-norm (i.e. the number of nonzero elements of ). In the previous notation, the nonzero entries of are . Solving the sparsity problem exactly is NP-hard, which is why approximation methods like MP are used.

For comparison, consider the Fourier transform representation of a signal - this can be described using the terms given above, where the dictionary is built from sinusoidal basis functions (the smallest possible complete dictionary). The main disadvantage of Fourier analysis in signal processing is that it extracts only the global features of the signals and does not adapt to the analysed signals . By taking an extremely redundant dictionary, we can look in it for atoms (functions) that best match a signal .

The algorithm[edit]

Example of the retrieval of an unknown signal (gray line) from few measurements (black dots) using a orthogonal matching pursuit algorithm (purple dots show the retrieved coefficients).

If contains a large number of vectors, searching for the most sparse representation of is computationally unacceptable for practical applications. In 1993, Mallat and Zhang[1] proposed a greedy solution that they named "Matching Pursuit." For any signal and any dictionary , the algorithm iteratively generates a sorted list of atom indices and weighting scalars, which form the sub-optimal solution to the problem of sparse signal representation.

Algorithm Matching Pursuit
 Input: Signal: , dictionary  with normalized columns .
 Output: List of coefficients  and indices for corresponding atoms .
 Initialization:
   ;
   ;
 Repeat:
   Find  with maximum inner product ;
   ;
   ;
   ;
 Until stop condition (for example: )
 return

In signal processing, the concept of matching pursuit is related to statistical projection pursuit, in which "interesting" projections are found; ones that deviate more from a normal distribution are considered to be more interesting.

Properties[edit]

.

Applications[edit]

Matching pursuit has been applied to signal, image[2] and video coding,[3][4] shape representation and recognition,[5] 3D objects coding,[6] and in interdisciplinary applications like structural health monitoring.[7] It has been shown that it performs better than DCT based coding for low bit rates in both efficiency of coding and quality of image.[8] The main problem with matching pursuit is the computational complexity of the encoder. In the basic version of an algorithm, the large dictionary needs to be searched at each iteration. Improvements include the use of approximate dictionary representations and suboptimal ways of choosing the best match at each iteration (atom extraction).[9] The matching pursuit algorithm is used in MP/SOFT, a method of simulating quantum dynamics.[10]

MP is also used in dictionary learning.[11][12] In this algorithm, atoms are learned from a database (in general, natural scenes such as usual images) and not chosen from generic dictionaries.

A very recent application of MP is its use in linear computation coding[13] to speed-up the computation of matrix-vector products.

Extensions[edit]

A popular extension of Matching Pursuit (MP) is its orthogonal version: Orthogonal Matching Pursuit[14][15] (OMP). The main difference from MP is that after every step, all the coefficients extracted so far are updated, by computing the orthogonal projection of the signal onto the subspace spanned by the set of atoms selected so far. This can lead to results better than standard MP, but requires more computation. OMP was shown to have stability and performance guarantees under certain restricted isometry conditions.[16] The incremental multi-parameter algorithm (IMP), published three years before MP, works in the same way as OMP.[17]

Extensions such as Multichannel MP[18] and Multichannel OMP[19] allow one to process multicomponent signals. An obvious extension of Matching Pursuit is over multiple positions and scales, by augmenting the dictionary to be that of a wavelet basis. This can be done efficiently using the convolution operator without changing the core algorithm.[20]

Matching pursuit is related to the field of compressed sensing and has been extended by researchers in that community. Notable extensions are Orthogonal Matching Pursuit (OMP),[21] Stagewise OMP (StOMP),[22] compressive sampling matching pursuit (CoSaMP),[23] Generalized OMP (gOMP),[24] and Multipath Matching Pursuit (MMP).[25]

See also[edit]

References[edit]

  1. ^ Mallat, S. G.; Zhang, Z. (1993). "Matching Pursuits with Time-Frequency Dictionaries". IEEE Transactions on Signal Processing. 1993 (12): 3397–3415. Bibcode:1993ITSP...41.3397M. doi:10.1109/78.258082. S2CID 14427335.
  • ^ Perrinet, L. (2015). "Sparse models for Computer Vision". Biologically Inspired Computer Vision. 14: 319–346. arXiv:1701.06859. doi:10.1002/9783527680863.ch14. ISBN 9783527680863. S2CID 2085413.
  • ^ Bergeaud, F.; Mallat, S. (1995). "Matching pursuit of images". Proceedings., International Conference on Image Processing. Vol. 1. pp. 53–56. doi:10.1109/ICIP.1995.529037. ISBN 978-0-7803-3122-8. S2CID 721789.
  • ^ Neff, R.; Zakhor, A. (1997). "Very low bit-rate video coding based on matching pursuits". IEEE Transactions on Circuits and Systems for Video Technology. 7 (1): 158–171. doi:10.1109/76.554427. S2CID 15317511.
  • ^ Mendels, F.; Vandergheynst, P.; Thiran, J.P. (2006). "Matching pursuit-based shape representation and recognition using scale-space". International Journal of Imaging Systems and Technology. 16 (5): 162–180. doi:10.1002/ima.20078. S2CID 5132416.
  • ^ Tosic, I.; Frossard, P.; Vandergheynst, P. (2005). "Progressive coding of 3D objects based on over-complete decompositions". IEEE Transactions on Circuits and Systems for Video Technology. 16 (11): 1338–1349. doi:10.1109/tcsvt.2006.883502. S2CID 3031513.
  • ^ Chakraborty, Debejyo; Kovvali, Narayan; Wei, Jun; Papandreou-Suppappola, Antonia; Cochran, Douglas; Chattopadhyay, Aditi (2009). "Damage Classification Structural Health Monitoring in Bolted Structures Using Time-frequency Techniques". Journal of Intelligent Material Systems and Structures. 20 (11): 1289–1305. doi:10.1177/1045389X08100044. S2CID 109511712.
  • ^ Perrinet, L. U.; Samuelides, M.; Thorpe, S. (2002). "Sparse spike coding in an asynchronous feed-forward multi-layer neural network using Matching Pursuit". Neurocomputing. 57C: 125–34. doi:10.1016/j.neucom.2004.01.010.[permanent dead link]
  • ^ Lin, Jian-Liang; Hwang, Wen-Liang; Pei, Soo-Chang (2007). "Fast matching pursuit video coding by combining dictionary approximation and atom extraction". IEEE Transactions on Circuits and Systems for Video Technology. 17 (12): 1679–1689. CiteSeerX 10.1.1.671.9670. doi:10.1109/tcsvt.2007.903120. S2CID 8315216.
  • ^ Wu, Yinghua; Batista, Victor S. (2003). "Matching-pursuit for simulations of quantum processes". J. Chem. Phys. 118 (15): 6720–6724. Bibcode:2003JChPh.118.6720W. doi:10.1063/1.1560636. S2CID 37544146.
  • ^ Perrinet, L. P. (2010). "Role of homeostasis in learning sparse representations". Neural Computation. 22 (7): 1812–1836. arXiv:0706.3177. doi:10.1162/neco.2010.05-08-795. PMC 2929690. PMID 20235818.
  • ^ Aharon, M.; Elad, M.; Bruckstein, A.M. (2006). "The K-SVD: An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation". IEEE Transactions on Signal Processing. 54 (11): 4311–4322. Bibcode:2006ITSP...54.4311A. doi:10.1109/tsp.2006.881199. S2CID 7477309.
  • ^ Müller, Ralf R.; Gäde, Bernhard; Bereyhi, Ali (2021). "Linear computation coding". arXiv:2102.00398. {{cite journal}}: Cite journal requires |journal= (help)
  • ^ Pati, Y.; Rezaiifar, R.; Krishnaprasad, P. (1993). "Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition". Proceedings of 27th Asilomar Conference on Signals, Systems and Computers. pp. 40–44. CiteSeerX 10.1.1.348.5735. doi:10.1109/acssc.1993.342465. ISBN 978-0-8186-4120-6. S2CID 16513805. {{cite book}}: |journal= ignored (help)
  • ^ Davis, G.; Mallat, S.; Zhang, Z. (1994). "Adaptive time-frequency decompositions with matching pursuits". Optical Engineering. 33 (7): 2183. Bibcode:1994OptEn..33.2183D. doi:10.1117/12.173207.
  • ^ Ding, J.; Chen, L.; Gu, Y. (2013). "Perturbation Analysis of Orthogonal Matching Pursuit". IEEE Transactions on Signal Processing. 61 (2): 398–410. arXiv:1106.3373. Bibcode:2013ITSP...61..398D. doi:10.1109/TSP.2012.2222377. ISSN 1941-0476. S2CID 17166658.
  • ^ Mather, John (1990). "The Incremental Multi-Parameter Algorithm". 1990 Conference Record Twenty-Fourth Asilomar Conference on Signals, Systems and Computers, 1990. Vol. 1. p. 368. doi:10.1109/ACSSC.1990.523362. ISBN 0-8186-2180-X. ISSN 1058-6393. S2CID 61327933.
  • ^ "Piecewise linear source separation", R. Gribonval, Proc. SPIE '03, 2003
  • ^ Tropp, Joel; Gilbert, A.; Strauss, M. (2006). "Algorithms for simultaneous sparse approximations; Part I : Greedy pursuit". Signal Proc. – Sparse Approximations in Signal and Image Processing. 86 (3): 572–588. Bibcode:2006SigPr..86..572T. doi:10.1016/j.sigpro.2005.05.030.
  • ^ Perrinet, Laurent U. (2015). "Sparse models for Computer Vision". Biologically Inspired Computer Vision. pp. 319–346. arXiv:1701.06859. doi:10.1002/9783527680863.ch14. ISBN 9783527680863. S2CID 2085413.
  • ^ Tropp, Joel A.; Gilbert, Anna C. (2007). "Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit" (PDF). IEEE Transactions on Information Theory. 53 (12): 4655–4666. doi:10.1109/tit.2007.909108. S2CID 6261304.
  • ^ Donoho, David L.; Tsaig, Yaakov; Drori, Iddo; Jean-luc, Starck (2006). "Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit". IEEE Transactions on Information Theory. 58 (2): 1094–1121. doi:10.1109/tit.2011.2173241. S2CID 7923170.
  • ^ Needell, D.; Tropp, J.A. (2009). "CoSaMP: Iterative signal recovery from incomplete and inaccurate samples". Applied and Computational Harmonic Analysis. 26 (3): 301–321. arXiv:0803.2392. doi:10.1016/j.acha.2008.07.002. S2CID 1642637.
  • ^ Wang, J.; Kwon, S.; Shim, B. (2012). "Generalized Orthogonal Matching Pursuit". IEEE Transactions on Signal Processing. 60 (12): 6202–6216. arXiv:1111.6664. Bibcode:2012ITSP...60.6202J. doi:10.1109/TSP.2012.2218810. S2CID 2585677.
  • ^ Kwon, S.; Wang, J.; Shim, B. (2014). "Multipath Matching Pursuit". IEEE Transactions on Information Theory. 60 (5): 2986–3001. arXiv:1308.4791. doi:10.1109/TIT.2014.2310482. S2CID 15134308.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Matching_pursuit&oldid=1231886356"

    Categories: 
    Multivariate statistics
    Signal processing
    Hidden categories: 
    All articles with dead external links
    Articles with dead external links from January 2018
    Articles with permanently dead external links
    CS1 errors: missing periodical
    CS1 errors: periodical ignored
    Articles with short description
    Short description matches Wikidata
    Wikipedia articles that are too technical from June 2023
    All articles that are too technical
     



    This page was last edited on 30 June 2024, at 20:23 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki