Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Principles of communication  





2 MOST networks  



2.1  MOST25  





2.2  MOST50  





2.3  MOST150  







3 Physical layer  





4 MOST Cooperation  





5 Infrastructure  





6 Competing standards  





7 References  





8 Further reading  





9 External links  














MOST Bus






Deutsch
Español
Français

Português
Svenska

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Media Oriented Systems Transport)

MOST (Media Oriented Systems Transport) is a high-speed multimedia network technology for the automotive industry. It can be used for applications inside or outside the car. The serial MOST bus uses a daisy-chain topology or ring topology and synchronous serial communication to transport audio, video, voice and data signals via plastic optical fiber (POF) (MOST25, MOST150) or electrical conductor (MOST50, MOST150) physical layers.

MOST technology is used in car brands worldwide, including Audi, BMW, General Motors, Honda, Hyundai, Jaguar, Lancia, Land Rover, Mercedes-Benz, Porsche, Toyota, Volkswagen, SAAB, SKODA, SEAT and Volvo.[citation needed]

MOST is a registered trademark of Standard Microsystems Corporation (SMSC), now owned by Microchip Technology.

Principles of communication[edit]

The MOST specification defines the physical and the data link layer as well as all seven layers of the OSI model for data communication. For the system developer, MOST is primarily a protocol definition. It provides the user with a standardized application programming interface (API) to access device functionality. The communication functionality is provided by driver software known as MOST Network Services. MOST Network Services include Basic Layer System Services (layers 3, 4, 5) and Application Socket Services (layer 6). They process the MOST protocol between a MOST network interface controller (NIC) and the API.

MOST networks[edit]

A MOST network is able to manage up to 64 MOST devices in a ring configuration. Plug-and-play functionality allows MOST devices to be easily attached and removed. MOST networks can also be set up in virtual star network or other topologies. Safety-critical applications use redundant double-ring configurations.

In a MOST network, one device is designated the timing master. Its role is to continuously supply the ring with MOST frames. A preamble is sent at the beginning of the frame transfer. The other devices, known as timing followers,[1] use the preamble for synchronization.

MOST25[edit]

MOST25 provides a bandwidth of approximately 23 megabaud for streaming (synchronous) as well as package (asynchronous) data transfer over an optical physical layer. It is separated into 60 physical channels. The user can select and configure the channels into groups of four. MOST25 provides services and methods for the allocation (and deallocation) of physical channels.

MOST25 supports up to 15 uncompressed stereo audio channels with CD-quality sound or up to 15 MPEG-1 channels for audio and video transfer, each of which uses four physical channels.

MOST also provides a channel for transferring control information. The system frequency of 44.1 kHz allows a bandwidth of 705.6 kbit/s, enabling 2670 control messages per second to be transferred. Limitations restrict the effective data transfer rate to about 10 kB/s (80 kbit/s). Control messages are used to configure MOST devices and configure synchronous and asynchronous data transfer. Reference data can also be transferred via the control channel.

MOST50[edit]

MOST50 doubles the bandwidth of a MOST25 system and increases the frame length to 1024 bits. The three established channels (control message channel, streaming data channel, packet data channel) of MOST25 remain the same, but the length of the control channel and the sectioning between the synchronous and asynchronous channels are flexible. Although MOST50 is specified to support both optical and electrical physical layers, the available MOST50 Intelligent Network Interface Controllers (INICs) only support electrical data transfer via a three copper conductor configuration; consisting of an Unshielded Twisted Pair (UTP) set and a single additional control line. The additional control line is connected to each MOST50 network device in a parallel single shared bus configuration. Each MOST50 device would contain five copper wire connections in this configuration. Control line (for signals sent from the master) and two UTP sets (each containing D+ D−). One set is used for data input (outputted from the preceding device on the network ring) while the other is used for data output to the next device on the ring. As with its fiber counterparts, closing or completing the ring (termination at the originating device) is required for any and all network operation.

MOST150[edit]

MOST150 was introduced in October 2007. It increases the frame length up to 3072 bits. It includes an Ethernet channel with adjustable bandwidth in addition to the three established channels (control message channel, streaming data channel, packet data channel) of the other grades of MOST. MOST150 also permits isochronous transfer on the synchronous channel.

Physical layer[edit]

MOST uses plastic optical fiber (POF) with a core diameter of 1 mm as transmission medium, in combination with light emitting diodes (LEDs) in the red wavelength range as transmitters. MOST25 only uses an optical physical layer. MOST50 and MOST150 support both optical and electrical physical layers.

MOST Cooperation[edit]

The MOST Cooperation, a partnership of carmakers, AV equipment designers, system architects, and key component suppliers, was founded in 1998. Their objective was to define and adopt a common multimedia network protocol and application object model.[2]

Infrastructure[edit]

The MOST Cooperation has published specifications for the MOST Bus for a number of years. However, these specifications do not include details on the data link layer. In March 2008, SMSC (formerly OASIS SiliconSystems), inventor of the first MOST NIC, and Harman/Becker announced that they would open and license their proprietary data link layer intellectual property to other semiconductor companies on a royalty-bearing basis.

At this time MOST chip solutions are available from SMSC, Analog Devices and some FPGA intellectual property vendors. Development tools are offered by K2L, Ruetz System Solutions, SMSC, Vector Informatik GmbH and Telemotive AG.

Competing standards[edit]

References[edit]

  1. ^ "Network timing synchronization systems".
  • ^ "Annual Achievement Report 2011]". Archived from the original on 2011-05-19.
  • ^ Amphenol's RJ Field connector range for harsh environment Ethernet applications.
  • Further reading[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=MOST_Bus&oldid=1227946798"

    Categories: 
    Automotive software
    Computer buses
    Automotive standards
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Articles lacking in-text citations from July 2011
    All articles lacking in-text citations
    Use American English from September 2023
    All Wikipedia articles written in American English
    All articles with unsourced statements
    Articles with unsourced statements from November 2021
    CS1 German-language sources (de)
     



    This page was last edited on 8 June 2024, at 17:06 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki