Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Images  





2 Uniform colorings  



2.1  Symmetry  







3 Related polyhedra and tilings  





4 See also  





5 References  





6 External links  














Order-3 apeirogonal tiling






Română

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Order-3 apeirogonal tiling
Order-3 apeirogonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic regular tiling
Vertex configuration 3
Schläfli symbol {∞,3}
t{∞,∞}
t(∞,∞,∞)
Wythoff symbol 3 | ∞ 2
2 ∞ | ∞
∞ ∞ ∞ |
Coxeter diagram

Symmetry group [∞,3], (*∞32)
[∞,∞], (*∞∞2)
[(∞,∞,∞)], (*∞∞∞)
Dual Infinite-order triangular tiling
Properties Vertex-transitive, edge-transitive, face-transitive

Ingeometry, the order-3 apeirogonal tiling is a regular tiling of the hyperbolic plane. It is represented by the Schläfli symbol {∞,3}, having three regular apeirogons around each vertex. Each apeirogon is inscribed in a horocycle.

The order-2 apeirogonal tiling represents an infinite dihedron in the Euclidean plane as {∞,2}.

Images[edit]

Each apeirogon face is circumscribed by a horocycle, which looks like a circle in a Poincaré disk model, internally tangent to the projective circle boundary.

Uniform colorings[edit]

Like the Euclidean hexagonal tiling, there are 3 uniform colorings of the order-3 apeirogonal tiling, each from different reflective triangle group domains:

Regular Truncations

{∞,3}

t0,1{∞,∞}

t1,2{∞,∞}

t{∞[3]}
Hyperbolic triangle groups

[∞,3]

[∞,∞]

[(∞,∞,∞)]

Symmetry[edit]

The dual to this tiling represents the fundamental domains of [(∞,∞,∞)] (*∞∞∞) symmetry. There are 15 small index subgroups (7 unique) constructed from [(∞,∞,∞)] by mirror removal and alternation. Mirrors can be removed if its branch orders are all even, and cuts neighboring branch orders in half. Removing two mirrors leaves a half-order gyration point where the removed mirrors met. In these images fundamental domains are alternately colored black and white, and mirrors exist on the boundaries between colors. The symmetry can be doubled as ∞∞2 symmetry by adding a mirror bisecting the fundamental domain. Dividing a fundamental domain by 3 mirrors creates a ∞32 symmetry.

A larger subgroup is constructed [(∞,∞,∞*)], index 8, as (∞*∞) with gyration points removed, becomes (*∞).

Related polyhedra and tilings[edit]

This tiling is topologically related as a part of sequence of regular polyhedra with Schläfli symbol {n,3}.

*n32 symmetry mutation of regular tilings: {n,3}
  • t
  • e
  • Spherical Euclidean Compact hyperb. Paraco. Noncompact hyperbolic
    {2,3} {3,3} {4,3} {5,3} {6,3} {7,3} {8,3} {∞,3} {12i,3} {9i,3} {6i,3} {3i,3}
    Paracompact uniform tilings in [∞,3] family
  • t
  • e
  • Symmetry: [∞,3], (*∞32) [∞,3]+
    (∞32)
    [1+,∞,3]
    (*∞33)
    [∞,3+]
    (3*∞)

    =

    =

    =
    =
    or
    =
    or

    =
    {∞,3} t{∞,3} r{∞,3} t{3,∞} {3,∞} rr{∞,3} tr{∞,3} sr{∞,3} h{∞,3} h2{∞,3} s{3,∞}
    Uniform duals
    V∞3 V3.∞.∞ V(3.∞)2 V6.6.∞ V3 V4.3.4.∞ V4.6.∞ V3.3.3.3.∞ V(3.∞)3 V3.3.3.3.3.∞
    Paracompact uniform tilings in [∞,∞] family
  • t
  • e

  • =
    =

    =
    =

    =
    =

    =
    =

    =
    =

    =

    =
    {∞,∞} t{∞,∞} r{∞,∞} 2t{∞,∞}=t{∞,∞} 2r{∞,∞}={∞,∞} rr{∞,∞} tr{∞,∞}
    Dual tilings
    V∞ V∞.∞.∞ V(∞.∞)2 V∞.∞.∞ V∞ V4.∞.4.∞ V4.4.∞
    Alternations
    [1+,∞,∞]
    (*∞∞2)
    [∞+,∞]
    (∞*∞)
    [∞,1+,∞]
    (*∞∞∞∞)
    [∞,∞+]
    (∞*∞)
    [∞,∞,1+]
    (*∞∞2)
    [(∞,∞,2+)]
    (2*∞∞)
    [∞,∞]+
    (2∞∞)
    h{∞,∞} s{∞,∞} hr{∞,∞} s{∞,∞} h2{∞,∞} hrr{∞,∞} sr{∞,∞}
    Alternation duals
    V(∞.∞) V(3.∞)3 V(∞.4)4 V(3.∞)3 V∞ V(4.∞.4)2 V3.3.∞.3.∞
    Paracompact uniform tilings in [(∞,∞,∞)] family
  • t
  • e
  • (∞,∞,∞)
    h{∞,∞}
    r(∞,∞,∞)
    h2{∞,∞}
    (∞,∞,∞)
    h{∞,∞}
    r(∞,∞,∞)
    h2{∞,∞}
    (∞,∞,∞)
    h{∞,∞}
    r(∞,∞,∞)
    r{∞,∞}
    t(∞,∞,∞)
    t{∞,∞}
    Dual tilings
    V∞ V∞.∞.∞.∞ V∞ V∞.∞.∞.∞ V∞ V∞.∞.∞.∞ V∞.∞.∞
    Alternations
    [(1+,∞,∞,∞)]
    (*∞∞∞∞)
    [∞+,∞,∞)]
    (∞*∞)
    [∞,1+,∞,∞)]
    (*∞∞∞∞)
    [∞,∞+,∞)]
    (∞*∞)
    [(∞,∞,∞,1+)]
    (*∞∞∞∞)
    [(∞,∞,∞+)]
    (∞*∞)
    [∞,∞,∞)]+
    (∞∞∞)
    Alternation duals
    V(∞.∞) V(∞.4)4 V(∞.∞) V(∞.4)4 V(∞.∞) V(∞.4)4 V3.∞.3.∞.3.∞

    See also[edit]

    References[edit]

    • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Order-3_apeirogonal_tiling&oldid=1189601611"

    Categories: 
    Apeirogonal tilings
    Hyperbolic tilings
    Isogonal tilings
    Isohedral tilings
    Order-3 tilings
    Regular tilings
    Hidden category: 
    Commons category link is on Wikidata
     



    This page was last edited on 12 December 2023, at 21:55 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki