Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Unit  





2 Types of solutes  





3 Definition  





4 Osmolarity vs. tonicity  





5 In medicine  



5.1  Plasma osmolarity vs. osmolality  





5.2  Hyperosmolarity and hypoosmolarity  







6 See also  





7 References  





8 External links  














Osmotic concentration






العربية

Bosanski
Català
Čeština
Dansk
Deutsch
Eesti
Español
فارسی
Français
Italiano
Монгол
Nederlands
Polski
Português
Română
Русский
Slovenčina
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Osmolarity)

Osmotic concentration, formerly known as osmolarity,[1] is the measure of solute concentration, defined as the number of osmoles (Osm) of solute per litre (L) of solution (osmol/L or Osm/L). The osmolarity of a solution is usually expressed as Osm/L (pronounced "osmolar"), in the same way that the molarity of a solution is expressed as "M" (pronounced "molar"). Whereas molarity measures the number of moles of solute per unit volume of solution, osmolarity measures the number of osmoles of solute particles per unit volume of solution.[2] This value allows the measurement of the osmotic pressure of a solution and the determination of how the solvent will diffuse across a semipermeable membrane (osmosis) separating two solutions of different osmotic concentration.

AnORS sachet with the osmolarity of its components

Unit

[edit]

The unit of osmotic concentration is the osmole. This is a non-SI unit of measurement that defines the number of moles of solute that contribute to the osmotic pressure of a solution. A milliosmole (mOsm) is 1/1,000 of an osmole. A microosmole (μOsm) (also spelled micro-osmole) is 1/1,000,000 of an osmole.

Types of solutes

[edit]

Osmolarity is distinct from molarity because it measures osmoles of solute particles rather than moles of solute. The distinction arises because some compounds can dissociate in solution, whereas others cannot.[2]

Ionic compounds, such as salts, can dissociate in solution into their constituent ions, so there is not a one-to-one relationship between the molarity and the osmolarity of a solution. For example, sodium chloride (NaCl) dissociates into Na+ and Cl ions. Thus, for every 1 mole of NaCl in solution, there are 2 osmoles of solute particles (i.e., a 1 mol/L NaCl solution is a 2 osmol/L NaCl solution). Both sodium and chloride ions affect the osmotic pressure of the solution.[2]

Another example is magnesium chloride (MgCl2), which dissociates into Mg2+ and 2Cl ions. For every 1 mole of MgCl2 in the solution, there are 3 osmoles of solute particles.

Nonionic compounds do not dissociate, and form only 1 osmole of solute per 1 mole of solute. For example, a 1 mol/L solution of glucose is 1 osmol/L.[2]

Multiple compounds may contribute to the osmolarity of a solution. For example, a 3 Osm solution might consist of: 3 moles glucose, or 1.5 moles NaCl, or 1 mole glucose + 1 mole NaCl, or 2 moles glucose + 0.5 mole NaCl, or any other such combination.[2]

Definition

[edit]

The osmolarity of a solution, given in osmoles per liter (osmol/L) is calculated from the following expression: where

Osmolarity can be measured using an osmometer which measures colligative properties, such as Freezing-point depression, Vapor pressure, or Boiling-point elevation.

Osmolarity vs. tonicity

[edit]

Osmolarity and tonicity are related but distinct concepts. Thus, the terms ending in -osmotic (isosmotic, hyperosmotic, hypoosmotic) are not synonymous with the terms ending in -tonic (isotonic, hypertonic, hypotonic). The terms are related in that they both compare the solute concentrations of two solutions separated by a membrane. The terms are different because osmolarity takes into account the total concentration of penetrating solutes and non-penetrating solutes, whereas tonicity takes into account the total concentration of non-freely penetrating solutes only.[3][2]

Penetrating solutes can diffuse through the cell membrane, causing momentary changes in cell volume as the solutes "pull" water molecules with them. Non-penetrating solutes cannot cross the cell membrane; therefore, the movement of water across the cell membrane (i.e., osmosis) must occur for the solutions to reach equilibrium.

A solution can be both hyperosmotic and isotonic.[2] For example, the intracellular fluid and extracellular can be hyperosmotic, but isotonic – if the total concentration of solutes in one compartment is different from that of the other, but one of the ions can cross the membrane (in other words, a penetrating solute), drawing water with it, thus causing no net change in solution volume.

In medicine

[edit]

Plasma osmolarity vs. osmolality

[edit]

Plasma osmolarity, the osmolarity of blood plasma, can be calculated from plasma osmolality by the following equation:[4]

Osmolarity = osmolality × (ρsolca)

where:

According to IUPAC, osmolality is the quotient of the negative natural logarithm of the rational activity of water and the molar mass of water, whereas osmolarity is the product of the osmolality and the mass density of water (also known as osmotic concentration).[1]

In simpler terms, osmolality is an expression of solute osmotic concentration per mass of solvent, whereas osmolarity is per volume of solution (thus the conversion by multiplying with the mass density of solvent in solution (kg solvent/litre solution).

where mi is the molality of component i.

Plasma osmolarity/osmolality is important for keeping proper electrolytic balance in the blood stream. Improper balance can lead to dehydration, alkalosis, acidosis or other life-threatening changes. Antidiuretic hormone (vasopressin) is partly responsible for this process by controlling the amount of water the body retains from the kidney when filtering the blood stream.[6]

Hyperosmolarity and hypoosmolarity

[edit]

A concentration of an osmatically active substance is said to be hyperosmolar if a high concentration causes a change in osmatic pressure in a tissue, organ, or system. Similarly, it is said to be hypoossmolar if the osmolarity, or osmatic concentration, is too low. For example, if the osmolarity of parenteral nutrition is too high, it can cause severe tissue damage.[7] One example of a condition caused by hypoosmolarity is water intoxication.[8]

See also

[edit]

References

[edit]
  1. ^ a b McNaught, A. D.; Wilkinson, A.; Chalk, S. J. (1997). IUPAC. Compendium of Chemical Terminology (the "Gold Book") (2nd ed.). Oxford: Blackwell Scientific Publications. ISBN 0-9678550-9-8. Retrieved 23 January 2022.
  • ^ a b c d e f g Widmaier, Eric P.; Hershel Raff; Kevin T. Strang (2008). Vander's Human Physiology, 11th Ed. McGraw-Hill. pp. 108–12. ISBN 978-0-07-304962-5.
  • ^ Costanzo, Linda S. (2017-03-15). Physiology. Preceded by: Costanzo, Linda S., 1947- (Sixth ed.). Philadelphia, PA. ISBN 9780323511896. OCLC 965761862.{{cite book}}: CS1 maint: location missing publisher (link)
  • ^ Martin, Alfred N.; Patrick J Sinko (2006). Martin's physical pharmacy and pharmaceutical sciences: physical chemical and biopharmaceutical principles in the pharmaceutical sciences. Philadelphia, Pennsylvania: Lippincott Williams and Wilkins. p. 158. ISBN 0-7817-5027-X.
  • ^ Shmukler, Michael (2004). Elert, Glenn (ed.). "Density of blood". The Physics Factbook. Retrieved 2022-01-23.
  • ^ Earley, L. E.; Sanders, C. A. (1959). "The Effect of Changing Serum Osmolality on the Release of Antidiuretic Hormone in Certain PAtients with Decompensated Cirrhosis of the Liver and Low Serum Osmolality". Journal of Clinical Investigation. 38 (3): 545–550. doi:10.1172/jci103832. PMC 293190. PMID 13641405.
  • ^ Panganiban, Jennifer; Mascarenhas, Maria R. (2021), "Parenteral Nutrition", Pediatric Gastrointestinal and Liver Disease, Elsevier, pp. 980–994.e5, doi:10.1016/b978-0-323-67293-1.00088-8, ISBN 978-0-323-67293-1, retrieved 2024-05-10
  • ^ Donaldson, D. (1994), "Psychiatric Disorders of Biochemical Origin", Scientific Foundations of Biochemistry in Clinical Practice, Elsevier, pp. 144–160, doi:10.1016/b978-0-7506-0167-2.50013-3, ISBN 978-0-7506-0167-2, retrieved 2024-05-10
  • [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Osmotic_concentration&oldid=1230795486"

    Categories: 
    Concentration
    Amount of substance
    Solutions
    Hidden categories: 
    CS1 maint: location missing publisher
    Articles with short description
    Short description matches Wikidata
    Articles with GND identifiers
     



    This page was last edited on 24 June 2024, at 19:20 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki