Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  



























Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Production  





2 Structure, preparation, and general properties  





3 Applications  



3.1  Precursor to metallic magnesium  





3.2  Dust and erosion control  





3.3  Catalysis  





3.4  Ice control  





3.5  Nutrition and medicine  





3.6  Cuisine  





3.7  Gardening and horticulture  





3.8  Wastewater treatment  







4 Occurrence  





5 Toxicology  



5.1  Plant toxicity  







6 See also  





7 Notes and references  





8 External links  














Magnesium chloride






Afrikaans
العربية
Azərbaycanca
تۆرکجه

Български
Bosanski
Català
Čeština
Dansk
Deutsch
Eesti
Español
Esperanto
فارسی
Français
Gaelg
Galego

Հայերեն
ि
Bahasa Indonesia
Italiano
Кыргызча
Magyar
Македонски
Nederlands

Polski
Português
Română
Русский
Slovenčina
Српски / srpski
Srpskohrvatski / српскохрватски
Suomi
Svenska
Türkçe
Українська
اردو
Tiếng Vit


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 


















From Wikipedia, the free encyclopedia
 


Magnesium chloride
Names
Other names
  • Magnesium dichloride
Identifiers

CAS Number

  • 7791-18-6 (hexahydrate) checkY
  • 3D model (JSmol)

  • Interactive image
  • ChEBI
    ChEMBL
    ChemSpider
    ECHA InfoCard 100.029.176 Edit this at Wikidata
    EC Number
    • 232-094-6
    E number E511 (acidity regulators, ...)

    Gmelin Reference

    9305

    PubChem CID

    RTECS number
    • OM2975000
    UNII
  • 02F3473H9O (hexahydrate) checkY
  • CompTox Dashboard (EPA)

    • InChI=1S/2ClH.Mg/h2*1H;/q;;+2/p-2 checkY

      Key: TWRXJAOTZQYOKJ-UHFFFAOYSA-L checkY

    • InChI=1S/2ClH.Mg/h2*1H;/q;;+2/p-2

    • Cl[Mg]Cl

    • [Mg+2].[Cl-].[Cl-]

    Properties

    Chemical formula

    MgCl2
    Molar mass 95.211 g/mol (anhydrous)
    203.31 g/mol (hexahydrate)
    Appearance white or colourless crystalline solid
    Density 2.32 g/cm3 (anhydrous)
    1.569 g/cm3 (hexahydrate)
    Melting point 714 °C (1,317 °F; 987 K)
    anhydrous
    117 °C (243 °F; 390 K)
    hexahydrate on rapid heating; slow heating leads to decomposition from 300 °C (572 °F; 573 K)
    Boiling point 1,412 °C (2,574 °F; 1,685 K)

    Solubility in water

    • Anhydrous:
  • 52.9 g/(100 mL) (0 °C)
  • 54.3 g/(100 mL) (20 °C)
  • 72.6 g/(100 mL) (100 °C)
  • Solubility slightly soluble in acetone, pyridine
    Solubilityinethanol 7.4 g/(100 mL) (30 °C)

    Magnetic susceptibility (χ)

    −47.4·10−6cm3/mol

    Refractive index (nD)

    1.675 (anhydrous)
    1.569 (hexahydrate)
    Structure

    Crystal structure

    CdCl2

    Coordination geometry

    (octahedral, 6-coordinate)
    Thermochemistry

    Heat capacity (C)

    71.09 J/(mol·K)

    Std molar
    entropy
    (S298)

    89.88 J/(mol·K)

    Std enthalpy of
    formation
    fH298)

    −641.1 kJ/mol

    Gibbs free energy fG)

    −591.6 kJ/mol
    Pharmacology

    ATC code

    A12CC01 (WHO) B05XA11 (WHO)
    Hazards[1]
    Occupational safety and health (OHS/OSH):

    Main hazards

    Irritant
    GHS labelling:

    Pictograms

    GHS07: Exclamation mark

    Signal word

    Warning

    Hazard statements

    H319, H335
    NFPA 704 (fire diamond)
    NFPA 704 four-colored diamondHealth 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
    1
    0
    0
    Flash point Non-flammable
    Lethal dose or concentration (LD, LC):

    LD50 (median dose)

    2800 mg/kg (oral, rat)
    Safety data sheet (SDS) ICSC 0764
    Related compounds

    Other anions

  • Magnesium bromide
  • Magnesium iodide
  • Other cations

  • Calcium chloride
  • Strontium chloride
  • Barium chloride
  • Radium chloride
  • Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

    checkY verify (what is checkY☒N ?)

    Infobox references

    Magnesium chloride is an inorganic compound with the formula MgCl2. It forms hydrates MgCl2·nH2O, where n can range from 1 to 12. These salts are colorless or white solids that are highly soluble in water. These compounds and their solutions, both of which occur in nature, have a variety of practical uses. Anhydrous magnesium chloride is the principal precursor to magnesium metal, which is produced on a large scale. Hydrated magnesium chloride is the form most readily available.[2]

    Production[edit]

    Magnesium chloride can be extracted from brineorsea water. In North America, it is produced primarily from Great Salt Lake brine. In the Jordan Valley, it is obtained from the Dead Sea. The mineral bischofite (MgCl2·6H2O) is extracted (by solution mining) out of ancient seabeds, for example, the Zechstein seabed in northwest Europe. Some deposits result from high content of magnesium chloride in the primordial ocean.[3] Some magnesium chloride is made from evaporation of seawater.

    In the Dow process, magnesium chloride is regenerated from magnesium hydroxide using hydrochloric acid:

    Mg(OH)2(s) + 2 HCl(aq) → MgCl2(aq) + 2 H2O(l)

    It can also be prepared from magnesium carbonate by a similar reaction.

    Structure, preparation, and general properties[edit]

    MgCl2 crystallizes in the cadmium chloride CdCl2 motif, which features octahedral Mg centers. Several hydrates are known with the formula MgCl2·nH2O, and each loses water upon heating: n = 12 (−16.4 °C), 8 (−3.4 °C), 6 (116.7 °C), 4 (181 °C), 2 (about 300 °C).[4] In the hexahydrate, the Mg2+ is also octahedral, but is coordinated to six water ligands.[5] The thermal dehydration of the hydrates MgCl2·nH2O (n = 6, 12) does not occur straightforwardly.[6] Anhydrous MgCl2 is produced industrially by heating the complex salt named hexamminemagnesium dichloride [Mg(NH3)6]2+(Cl)2.[2]

    As suggested by the existence of hydrates, anhydrous MgCl2 is a Lewis acid, although a weak one. One derivative is tetraethylammonium tetrachloromagnesate [N(CH2CH3)4]2[MgCl4]. The adduct MgCl2(TMEDA) is another.[7] In the coordination polymer with the formula MgCl2(dioxane)2, Mg adopts an octahedral geometry.[8] The Lewis acidity of magnesium chloride is reflected in its deliquescence, meaning that it attracts moisture from the air to the extent that the solid turns into a liquid.

    Applications[edit]

    Precursor to metallic magnesium[edit]

    Anhydrous MgCl2 is the main precursor to metallic magnesium. The reduction of Mg2+ into metallic Mg is performed by electrolysisinmolten salt.[2][9] As it is also the case for aluminium, an electrolysis in aqueous solution is not possible as the produced metallic magnesium would immediately react with water, or in other words that the water H+ would be reduced into gaseous H2 before Mg reduction could occur. So, the direct electrolysis of molten MgCl2 in the absence of water is required because the reduction potential to obtain Mg is lower than the stability domain of water on an Eh–pH diagram (Pourbaix diagram).

    MgCl2 → Mg + Cl2

    The production of metallic magnesium at the cathode (reduction reaction) is accompanied by the oxidation of the chloride anions at the anode with release of gaseous chlorine. This process is developed at a large industrial scale.

    Dust and erosion control[edit]

    Magnesium chloride is one of many substances used for dust control, soil stabilization, and wind erosion mitigation.[10] When magnesium chloride is applied to roads and bare soil areas, both positive and negative performance issues occur which are related to many application factors.[11]

    Catalysis[edit]

    Ziegler-Natta catalysts, used commercially to produce polyolefins, often contain MgCl2 as a catalyst support.[12] The introduction of MgCl2 supports increases the activity of traditional catalysts and allowed the development of highly stereospecific catalysts for the production of polypropylene.[13]

    Magnesium chloride is also a Lewis acid catalyst in aldol reactions.[14]

    Ice control[edit]

    Picture of truck applying liquid de-icer (magnesium chloride) to city streets.

    Magnesium chloride is used for low-temperature de-icing of highways, sidewalks, and parking lots. When highways are treacherous due to icy conditions, magnesium chloride is applied to help prevent ice from bonding to the pavement, allowing snow plows to clear treated roads more efficiently.

    For the purpose of preventing ice from forming on pavement, magnesium chloride is applied in three ways: anti-icing, which involves spreading it on roads to prevent snow from sticking and forming; prewetting, which means a liquid formulation of magnesium chloride is sprayed directly onto salt as it is being spread onto roadway pavement, wetting the salt so that it sticks to the road; and pretreating, when magnesium chloride and salt are mixed together before they are loaded onto trucks and spread onto paved roads. Calcium chloride damages concrete twice as fast as magnesium chloride.[15] The amount of magnesium chloride is supposed to be controlled when it is used for de-icing as it may cause pollution to the environment.[16]

    Nutrition and medicine[edit]

    Magnesium chloride is used in nutraceutical and pharmaceutical preparations. The hexahydrate is sometimes advertised as "magnesium oil".

    Cuisine[edit]

    Magnesium chloride (E511[17]) is an important coagulant used in the preparation of tofu from soy milk.

    In Japan it is sold as nigari (にがり, derived from the Japanese word for "bitter"), a white powder produced from seawater after the sodium chloride has been removed, and the water evaporated. In China, it is called lushui (卤水).

    Nigari or Iushui is, in fact, natural magnesium chloride, meaning that it is not completely refined (it contains up to 5% magnesium sulfate and various minerals). The crystals originate from lakes in the Chinese province of Qinghai, to be then reworked in Japan.

    It is an inexpensive dietary supplement providing magnesium, hence its interest in view of a general deficit in our current consumption (to be in full health, the human body must in particular benefit from a balance between calcium and magnesium). It is also an ingredient in baby formula milk.[18]

    Gardening and horticulture[edit]

    Because magnesium is a mobile nutrient, magnesium chloride can be effectively used as a substitute for magnesium sulfate (Epsom salt) to help correct magnesium deficiency in plants via foliar feeding. The recommended dose of magnesium chloride is smaller than the recommended dose of magnesium sulfate (20 g/L).[19] This is due primarily to the chlorine present in magnesium chloride, which can easily reach toxic levels if over-applied or applied too often.[20]

    It has been found that higher concentrations of magnesium in tomato and some pepper plants can make them more susceptible to disease caused by infection of the bacterium Xanthomonas campestris, since magnesium is essential for bacterial growth.[21]

    Wastewater treatment[edit]

    It is used to supply the magnesium necessary to precipitate phosphorus in the form of struvite from agricultural waste[22] as well as human urine

    Occurrence[edit]

    Mass fractions of various salt ions in seawater
    Chemical composition of sea salt

    Magnesium concentrations in natural seawater are between 1250 and 1350 mg/L, around 3.7% of the total seawater mineral content. Dead Sea minerals contain a significantly higher magnesium chloride ratio, 50.8%. Carbonates and calcium[clarification needed] are essential for all growth of corals, coralline algae, clams, and invertebrates. Magnesium can be depleted by mangrove plants and the use of excessive limewater or by going beyond natural calcium, alkalinity, and pH values.[23] The most common mineral form of magnesium chloride is its hexahydrate, bischofite.[24][25] Anhydrous compound occurs very rarely, as chloromagnesite.[25] Magnesium chloride-hydroxides, korshunovskite and nepskoeite, are also very rare.[26][27][25]

    Toxicology[edit]

    Magnesium ions are bitter-tasting, and magnesium chloride solutions are bitter in varying degrees, depending on the concentration.

    Magnesium toxicity from magnesium salts is rare in healthy individuals with a normal diet, because excess magnesium is readily excreted in urine by the kidneys. A few cases of oral magnesium toxicity have been described in persons with normal renal function ingesting large amounts of magnesium salts, but it is rare. If a large amount of magnesium chloride is eaten, it will have effects similar to magnesium sulfate, causing diarrhea, although the sulfate also contributes to the laxative effect in magnesium sulfate, so the effect from the chloride is not as severe.

    Plant toxicity[edit]

    Chloride (Cl) and magnesium (Mg2+) are both essential nutrients important for normal plant growth. Too much of either nutrient may harm a plant, although foliar chloride concentrations are more strongly related with foliar damage than magnesium. High concentrations of MgCl2 ions in the soil may be toxic or change water relationships such that the plant cannot easily accumulate water and nutrients. Once inside the plant, chloride moves through the water-conducting system and accumulates at the margins of leaves or needles, where dieback occurs first. Leaves are weakened or killed, which can lead to the death of the tree.[28]

    See also[edit]

    Notes and references[edit]

    Notes
    1. ^ "Summary of Classification and Labelling". echa.europa.eu.
  • ^ a b c Margarete Seeger; Walter Otto; Wilhelm Flick; Friedrich Bickelhaupt; Otto S. Akkerman. "Magnesium Compounds". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a15_595.pub2. ISBN 978-3527306732.
  • ^ Hisahiro Ueda and Takazo Shibuya (2021). "Composition of the Primordial Ocean Just after Its Formation: Constraints from the Reactions between the Primitive Crust and a Strongly Acidic, CO2-Rich Fluid at Elevated Temperatures and Pressures". Minerals. 11 (4). Minerals 2021, 11(4), p. 389: 389. Bibcode:2021Mine...11..389U. doi:10.3390/min11040389.
  • ^ Holleman, A. F.; Wiberg, E. Inorganic Chemistry Academic Press: San Diego, 2001. ISBN 0-12-352651-5.
  • ^ Wells, A. F. (1984) Structural Inorganic Chemistry, Oxford: Clarendon Press. ISBN 0-19-855370-6.
  • ^ See notes in Rieke, R. D.; Bales, S. E.; Hudnall, P. M.; Burns, T. P.; Poindexter, G. S. "Highly Reactive Magnesium for the Preparation of Grignard Reagents: 1-Norbornane Acid", Organic Syntheses, Collected Volume 6, p. 845 (1988). "Archived copy" (PDF). Archived from the original (PDF) on 2007-09-30. Retrieved 2007-05-10.{{cite web}}: CS1 maint: archived copy as title (link)
  • ^ N. N. Greenwood, A. Earnshaw, Chemistry of the Elements, Pergamon Press, 1984.
  • ^ Fischer, Reinald; Görls, Helmar; Meisinger, Philippe R.; Suxdorf, Regina; Westerhausen, Matthias (2019). "Structure–Solubility Relationship of 1,4‐Dioxane Complexes of Di(hydrocarbyl)magnesium". Chemistry – A European Journal. 25 (55): 12830–12841. doi:10.1002/chem.201903120. PMC 7027550. PMID 31328293.
  • ^ Hill, Petrucci, McCreary, Perry, General Chemistry, 4th ed., Pearson/Prentice Hall, Upper Saddle River, New Jersey, USA.
  • ^ "Dust Palliative Selection and Application Guide". Fs.fed.us. Retrieved 2017-10-18.
  • ^ "FSE Documents" (PDF). www.nrcs.usda.gov. Archived from the original (PDF) on 2022-10-16.
  • ^ Dennis B. Malpass (2010). "Commercially Available Metal Alkyls and Their Use in Polyolefin Catalysts". In Ray Hoff; Robert T. Mathers (eds.). Handbook of Transition Metal Polymerization Catalysts. John Wiley & Sons, Inc. pp. 1–28. doi:10.1002/9780470504437.ch1. ISBN 9780470504437.
  • ^ Norio Kashiwa (2004). "The Discovery and Progress of MgCl2-Supported TiCl4 Catalysts". Journal of Polymer Science A. 42 (1): 1–8. Bibcode:2004JPoSA..42....1K. doi:10.1002/pola.10962.
  • ^ Evans, David A.; Tedrow, Jason S.; Shaw, Jared T.; Downey, C. Wade (2002). "Diastereoselective Magnesium Halide-Catalyzed anti-Aldol Reactions of Chiral N-Acyloxazolidinones". Journal of the American Chemical Society. 124 (3): 392–393. doi:10.1021/ja0119548. PMID 11792206.
  • ^ Jain, J., Olek, J., Janusz, A., and Jozwiak-Niedzwiedzka, D., "Effects of Deicing Salt Solutions on Physical Properties of Pavement Concretes", Transportation Research Record: Journal of the Transportation Research Board, No. 2290, Transportation Research Board of the National Academies, Washington, D.C., 2012, pp. 69-75. doi:10.3141/2290-09.
  • ^ Dai, H.L.; Zhang, K.L.; Xu, X.L.; Yu, H.Y. (2012). "Evaluation on the Effects of Deicing Chemicals on Soil and Water Environment". Procedia Environmental Sciences. 13: 2122–2130. doi:10.1016/j.proenv.2012.01.201.
  • ^ Food Standard Agency. "Current EU approved additives and their E Numbers". Retrieved 22 March 2010.
  • ^ "Listed under ingredients for Similac Hypoallergenic Infant Formula with Iron (Abbott Nutrition)". abbottnutrition.com. Retrieved 2013-07-22.
  • ^ "Comparison of Magnesium Sulfate and THIS Mg Chelate Foliar Sprays". Canadian Journal of Plant Science. January 1985. doi:10.4141/cjps85-018.
  • ^ "Magnesium Chloride Toxicity in Trees". Ext.colostate.edu. Archived from the original on 2009-01-15. Retrieved 2017-10-18.
  • ^ "Effect of Foliar and Soil Magnesium Application on Bacterial Leaf Spot of Peppers" (PDF). Retrieved 2017-10-18.
  • ^ BURNS, R.T. (15 January 2001). "LABORATORY AND IN-SITU REDUCTIONS OF SOLUBLE PHOSPHORUS IN SWINE WASTE SLURRIES" (PDF). Environmental Technology. 22: 1273–1278. Retrieved 30 December 2023.
  • ^ "Aquarium Chemistry: Magnesium In Reef Aquaria — Advanced Aquarist | Aquarist Magazine and Blog". Advancedaquarist.com. 2003-10-15. Retrieved 2013-01-17.
  • ^ "Bischofite: Mineral information, data and localities". mindat.org.
  • ^ a b c "List of Minerals". International Mineralogical Association. 21 March 2011.
  • ^ "Korshunovskite: Mineral information, data and localities". mindat.org.
  • ^ "Nepskoeite: Mineral information, data and localities". mindat.org.
  • ^ "Publications – ExtensionExtension". Ext.colostate.edu. Archived from the original on 2015-09-24. Retrieved 2017-10-18.
  • References

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Magnesium_chloride&oldid=1228284502"

    Categories: 
    Chlorides
    Magnesium compounds
    Alkaline earth metal halides
    Deliquescent materials
    Food additives
    E-number additives
    Hidden categories: 
    CS1 maint: archived copy as title
    Articles with short description
    Short description is different from Wikidata
    Chemical articles with multiple compound IDs
    Multiple chemicals in an infobox that need indexing
    Chemical articles with multiple CAS registry numbers
    Articles without KEGG source
    Articles with changed EBI identifier
    ECHA InfoCard ID from Wikidata
    E number from Wikidata
    Chembox having GHS data
    Articles containing unverified chemical infoboxes
    Short description matches Wikidata
    Wikipedia articles needing clarification from June 2022
     



    This page was last edited on 10 June 2024, at 11:47 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki