Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Production  



1.1  Other methods  







2 Applications  



2.1  Polymerization  





2.2  As a solvent  



2.2.1  Laboratory use  





2.2.2  Reaction with hydrogen sulfide  









3 Lewis basicity  





4 Precautions  





5 Related compounds  



5.1  Tetrahydrofurans  





5.2  Oxolanes  







6 See also  





7 References  





8 General reference  





9 External links  














Tetrahydrofuran






العربية
تۆرکجه

Català
Čeština
Deutsch
Eesti
Ελληνικά
Español
Esperanto
Euskara
فارسی
Français

Հայերեն
ि
Bahasa Indonesia
Italiano
עברית

Latviešu
Magyar
Македонски
Bahasa Melayu
Nederlands

Polski
Português
Română
Русский
Slovenčina
Српски / srpski
Srpskohrvatski / српскохрватски
Suomi
Svenska
Türkçe
Українська
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Oxolane)

Tetrahydrofuran
Skeletal formula of tetrahydrofuran
Skeletal formula of tetrahydrofuran
Ball-and-stick model of the tetrahydrofuran molecule
Ball-and-stick model of the tetrahydrofuran molecule
Photograph of a glass bottle of tetrahydrofuran
Names
Preferred IUPAC name

Oxolane[1]

Systematic IUPAC name

1,4-Epoxybutane
1-Oxacyclopentane

Other names

Tetrahydrofuran
THF
1,4-Butylene oxide
Cyclotetramethylene oxide fraction
Furanidin
Tetra-methylene oxide, Oxolane

Identifiers

CAS Number

3D model (JSmol)

Abbreviations THF
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.003.389 Edit this at Wikidata

PubChem CID

RTECS number
  • LU5950000
UNII

CompTox Dashboard (EPA)

  • InChI=1S/C4H8O/c1-2-4-5-3-1/h1-4H2 checkY

    Key: WYURNTSHIVDZCO-UHFFFAOYSA-N checkY

  • InChI=1/C4H8O/c1-2-4-5-3-1/h1-4H2

    Key: WYURNTSHIVDZCO-UHFFFAOYAI

  • C1CCOC1

Properties

Chemical formula

C4H8O
Molar mass 72.107 g·mol−1
Appearance Colorless liquid
Odor Ether-like[2]
Density 0.8876 g/cm3 at 20 °C, liquid [3]
Melting point −108.4 °C (−163.1 °F; 164.8 K)
Boiling point 66 °C (151 °F; 339 K)[4][3]

Solubility in water

Miscible
Vapor pressure 132 mmHg (20 °C)[2]

Refractive index (nD)

1.4073 (20 °C) [3]
Viscosity 0.48 cP at 25 °C
Structure

Molecular shape

Envelope

Dipole moment

1.63 D (gas)
Hazards
GHS labelling:

Pictograms

GHS02: Flammable GHS07: Exclamation mark GHS08: Health hazard[5]

Signal word

Danger

Hazard statements

H225, H302, H319, H335, H351[5]

Precautionary statements

P210, P280, P301+P312+P330, P305+P351+P338, P370+P378, P403+P235[5]
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 3: Liquids and solids that can be ignited under almost all ambient temperature conditions. Flash point between 23 and 38 °C (73 and 100 °F). E.g. gasolineInstability 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g. calciumSpecial hazards (white): no code
2
3
1
Flash point −14 °C (7 °F; 259 K)
Explosive limits 2–11.8%[2]
Lethal dose or concentration (LD, LC):

LD50 (median dose)

  • 1650 mg/kg (rat, oral)
  • 2300 mg/kg (mouse, oral)
  • 2300 mg/kg (guinea pig, oral)[6]
  • LC50 (median concentration)

    21000 ppm (rat, 3 h)[6]
    NIOSH (US health exposure limits):

    PEL (Permissible)

    TWA 200 ppm (590 mg/m3)[2]

    REL (Recommended)

    TWA 200 ppm (590 mg/m3) ST 250 ppm (735 mg/m3)[2]

    IDLH (Immediate danger)

    2000 ppm[2]
    Related compounds

    Related heterocycles

    Furan
    Pyrrolidine
    Dioxane

    Related compounds

    Diethyl ether
    Supplementary data page
    Tetrahydrofuran (data page)

    Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

    ☒N verify (what is checkY☒N ?)

    Infobox references

    Tetrahydrofuran (THF), or oxolane, is an organic compound with the formula (CH2)4O. The compound is classified as heterocyclic compound, specifically a cyclic ether. It is a colorless, water-miscible organic liquid with low viscosity. It is mainly used as a precursor to polymers.[8] Being polar and having a wide liquid range, THF is a versatile solvent. It is an isomer of another solvent, butanone.

    Production[edit]

    About 200,000 tonnes of tetrahydrofuran are produced annually.[9] The most widely used industrial process involves the acid-catalyzed dehydration of 1,4-butanediol. Ashland/ISP is one of the biggest producers of this chemical route. The method is similar to the production of diethyl ether from ethanol. The butanediol is derived from condensationofacetylene with formaldehyde followed by hydrogenation.[8] DuPont developed a process for producing THF by oxidizing n-butane to crude maleic anhydride, followed by catalytic hydrogenation.[10] A third major industrial route entails hydroformylationofallyl alcohol followed by hydrogenation to 1,4-butanediol.

    Other methods[edit]

    THF can also be synthesized by catalytic hydrogenation of furan.[11][12] This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan,[13] although this method is not widely practiced. THF is thus derivable from renewable resources.

    Applications[edit]

    Polymerization[edit]

    In the presence of strong acids, THF converts to a linear polymer called poly(tetramethylene ether) glycol (PTMEG), also known as polytetramethylene oxide (PTMO):

    This polymer is primarily used to make elastomeric polyurethane fibers like Spandex.[14]

    As a solvent[edit]

    The other main application of THF is as an industrial solvent for polyvinyl chloride (PVC) and in varnishes.[8] It is an aprotic solvent with a dielectric constant of 7.6. It is a moderately polar solvent and can dissolve a wide range of nonpolar and polar chemical compounds.[15] THF is water-miscible and can form solid clathrate hydrate structures with water at low temperatures.[16]

    THF has been explored as a miscible co-solvent in aqueous solution to aid in the liquefaction and delignification of plant lignocellulosic biomass for production of renewable platform chemicals and sugars as potential precursors to biofuels.[17] Aqueous THF augments the hydrolysis of glycans from biomass and dissolves the majority of biomass lignin making it a suitable solvent for biomass pretreatment.

    THF is often used in polymer science. For example, it can be used to dissolve polymers prior to determining their molecular mass using gel permeation chromatography. THF dissolves PVC as well, and thus it is the main ingredient in PVC adhesives. It can be used to liquefy old PVC cement and is often used industrially to degrease metal parts.

    THF is used as a component in mobile phases for reversed-phase liquid chromatography. It has a greater elution strength than methanoloracetonitrile, but is less commonly used than these solvents.

    THF is used as a solvent in 3D printing when printing with PLA, PETG and substantially similar filaments. It can be used to clean clogged 3D printer parts, as well as when finishing prints to remove extruder lines and add a shine to the finished product.

    Laboratory use[edit]

    In the laboratory, THF is a popular solvent when its water miscibility is not an issue. It is more basic than diethyl ether[18] and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.[19] Thus, while diethyl ether remains the solvent of choice for some reactions (e.g., Grignard reactions), THF fills that role in many others, where strong coordination is desirable and the precise properties of ethereal solvents such as these (alone and in mixtures and at various temperatures) allows fine-tuning modern chemical reactions.

    Commercial THF contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although THF is traditionally dried by distillation from an aggressive desiccant such as elemental sodium, molecular sieves have been shown to be superior water scavengers.[20]

    Reaction with hydrogen sulfide[edit]

    In the presence of a solid acid catalyst, THF reacts with hydrogen sulfide to give tetrahydrothiophene.[21]

    Lewis basicity[edit]

    Structure of VCl3(thf)3.[22]

    THF is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). THF has been classified in the ECW model and it has been shown that there is no one order of base strengths.[23] Many complexes are of the stoichiometry MCl3(THF)3.[24]

    Precautions[edit]

    THF is a relatively acutely nontoxic solvent, with the median lethal dose (LD50) comparable to that for acetone. However, chronic exposure is suspected of causing cancer.[5][25] Reflecting its remarkable solvent properties, it penetrates the skin, causing rapid dehydration. THF readily dissolves latex and thus should be handled with nitrile rubber gloves. It is highly flammable.

    One danger posed by THF is its tendency to form the explosive compound 2-hydroperoxytetrahydrofuran upon reaction with air:

    To minimize this problem, commercial supplies of THF are often stabilized with butylated hydroxytoluene (BHT). Distillation of THF to dryness is unsafe because the explosive peroxides can concentrate in the residue.

    Related compounds[edit]

    Tetrahydrofurans[edit]

    Chemical structure of annonacin, an acetogenin.
    Eribulin (brand name: Halaven), a commercial THF-containing anticancer drug.

    The tetrahydrofuran ring is found in diverse natural products including lignans, acetogenins, and polyketide natural products.[26] Diverse methodology has been developed for the synthesis of substituted THFs.[27]

    Oxolanes[edit]

    Tetrahydrofuran is one of the class of pentic cyclic ethers called oxolanes. There are seven possible structures, namely,[28]

    See also[edit]

    References[edit]

    1. ^ "New IUPAC Organic Nomenclature - Chemical Information BULLETIN" (PDF).
  • ^ a b c d e f NIOSH Pocket Guide to Chemical Hazards. "#0602". National Institute for Occupational Safety and Health (NIOSH).
  • ^ a b c Baird, Zachariah Steven; Uusi-Kyyny, Petri; Pokki, Juha-Pekka; Pedegert, Emilie; Alopaeus, Ville (6 Nov 2019). "Vapor Pressures, Densities, and PC-SAFT Parameters for 11 Bio-compounds". International Journal of Thermophysics. 40 (11): 102. Bibcode:2019IJT....40..102B. doi:10.1007/s10765-019-2570-9.
  • ^ NIST Chemistry WebBook. http://webbook.nist.gov
  • ^ a b c d Record of Tetrahydrofuran in the GESTIS Substance Database of the Institute for Occupational Safety and Health, accessed on 2 June 2020.
  • ^ a b "Tetrahydrofuran". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  • ^ "New Environment Inc. - NFPA Chemicals". Newenv.com. Retrieved 2016-07-16.
  • ^ a b c Müller, Herbert. "Tetrahydrofuran". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a26_221. ISBN 978-3527306732.
  • ^ Karas, Lawrence; Piel, W. J. (2004). "Ethers". Kirk‑Othmer Encyclopedia of Chemical Technology. John Wiley & Sons.
  • ^ Budavari, Susan, ed. (2001), The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals (13th ed.), Merck, ISBN 0911910131
  • ^ Morrison, Robert Thornton; Boyd, Robert Neilson (1972). Organic Chemistry (2nd ed.). Allyn and Bacon. p. 569.
  • ^ Starr, Donald; Hixon, R. M. (1943). "Tetrahydrofuran". Organic Syntheses; Collected Volumes, vol. 2, p. 566.
  • ^ Hoydonckx, H. E.; Rhijn, W. M. Van; Rhijn, W. Van; Vos, D. E. De; Jacobs, P. A. (2007), "Furfural and Derivatives", Ullmann's Encyclopedia of Industrial Chemistry, American Cancer Society, doi:10.1002/14356007.a12_119.pub2, ISBN 978-3-527-30673-2
  • ^ Pruckmayr, Gerfried; Dreyfuss, P.; Dreyfuss, M. P. (1996). "Polyethers, Tetrahydrofuran and Oxetane Polymers". Kirk‑Othmer Encyclopedia of Chemical Technology. John Wiley & Sons.
  • ^ "Chemical Reactivity". Michigan State University. Archived from the original on 2010-03-16. Retrieved 2010-02-15.
  • ^ "NMR–MRI study of clathrate hydrate mechanisms" (PDF). Fileave.com. Archived from the original (PDF) on 2011-07-11. Retrieved 2010-02-15.
  • ^ Cai, Charles; Zhang, Taiying; Kumar, Rajeev; Wyman, Charles (13 August 2013). "THF co-solvent enhances hydrocarbon fuel precursor yields from lignocellulosic biomass". Green Chemistry. 15 (11): 3140–3145. doi:10.1039/C3GC41214H.
  • ^ Lucht, B. L.; Collum, D. B. (1999). "Lithium Hexamethyldisilazide: A View of Lithium Ion Solvation through a Glass-Bottom Boat". Accounts of Chemical Research. 32 (12): 1035–1042. doi:10.1021/ar960300e.
  • ^ Elschenbroich, C.; Salzer, A. (1992). Organometallics: A Concise Introduction (2nd ed.). Weinheim: Wiley-VCH. ISBN 3-527-28165-7.
  • ^ Williams, D. B. G.; Lawton, M. (2010). "Drying of Organic Solvents: Quantitative Evaluation of the Efficiency of Several Desiccants". Journal of Organic Chemistry. 75 (24): 8351–4. doi:10.1021/jo101589h. PMID 20945830. S2CID 17801540.
  • ^ Swanston, Jonathan. "Thiophene". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a26_793.pub2. ISBN 978-3527306732.
  • ^ F.A. Cotton; S.A. Duraj; G.L. Powell; W.J. Roth (1986). "Comparative Structural Studies of the First Row Early Transition Metal(III) Chloride Tetrahydrofuran Solvates". Inorg. Chim. Acta. 113: 81. doi:10.1016/S0020-1693(00)86863-2.
  • ^ Vogel G. C.; Drago, R. S. (1996). "The ECW Model". Journal of Chemical Education. 73 (8): 701–707. Bibcode:1996JChEd..73..701V. doi:10.1021/ed073p701.
  • ^ Manzer, L. E. "Tetrahydrofuran Complexes of Selected Early Transition Metals," Inorganic Synthesis. 21, 135–140, (1982).
  • ^ "Material Safety Data Sheet Tetrahydrofuran, 99.5+%, for spectroscopy". Fisher Scientific. Retrieved 2022-07-27.
  • ^ Lorente, Adriana; Lamariano-Merketegi, Janire; Albericio, Fernando; Álvarez, Mercedes (2013). "Tetrahydrofuran-Containing Macrolides: A Fascinating Gift from the Deep Sea". Chemical Reviews. 113 (7): 4567–4610. doi:10.1021/cr3004778. PMID 23506053.
  • ^ Wolfe, John P.; Hay, Michael B. (2007). "Recent advances in the stereoselective synthesis of tetrahydrofurans". Tetrahedron. 63 (2): 261–290. doi:10.1016/j.tet.2006.08.105. PMC 1826827. PMID 18180807.
  • ^ Cremer, Dieter (1983). "Theoretical Determination of Molecular Structure and Conformation. XI. The Puckering of Oxolanes". Israel Journal of Chemistry. 23: 72–84. doi:10.1002/ijch.198300010.
  • General reference[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Tetrahydrofuran&oldid=1223341412"

    Categories: 
    Ether solvents
    Tetrahydrofurans
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Articles without KEGG source
    Articles with changed EBI identifier
    ECHA InfoCard ID from Wikidata
    Chembox having GHS data
    Chemical articles having a data page
    Articles containing unverified chemical infoboxes
    Chembox image size set
    Short description matches Wikidata
    Commons category link is on Wikidata
    Webarchive template wayback links
    Articles with GND identifiers
    Articles with J9U identifiers
    Articles with LCCN identifiers
     



    This page was last edited on 11 May 2024, at 13:43 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki