Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  



























Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Applications  



1.1  Organic synthesis  





1.2  As an electron pair donor  







2 Production  



2.1  Acetonitrile shortage in 20082009  







3 Safety  



3.1  Toxicity  



3.1.1  Metabolism and excretion  









4 See also  





5 References  





6 External links  














Acetonitrile






العربية
تۆرکجه
Català
Čeština
Dansk
Deutsch
Eesti
Ελληνικά
Español
Esperanto
Euskara
فارسی
Français
Galego

ि
Bahasa Indonesia
Italiano
עברית
Magyar
Македонски
Nederlands

Norsk bokmål
Polski
Português
Română
Русский
Simple English
Slovenčina
Slovenščina
Српски / srpski
Srpskohrvatski / српскохрватски
Suomi
Svenska
Türkçe
Українська
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 


















From Wikipedia, the free encyclopedia
 


Acetonitrile
Skeletal formula of acetonitrile
Skeletal formula of acetonitrile
Skeletal formula of acetonitrile with all explicit hydrogens added
Skeletal formula of acetonitrile with all explicit hydrogens added
Ball and stick model of acetonitrile
Ball and stick model of acetonitrile
Spacefill model of acetonitrile
Spacefill model of acetonitrile
Names
Preferred IUPAC name

Acetonitrile[2]

Systematic IUPAC name

Ethanenitrile[2]

Other names
  • Cyanomethane[1]
  • Ethyl nitrile[1]
  • Methanecarbonitrile[1]
  • Methyl cyanide[1]
  • MeCN
  • ACN
  • Identifiers

    CAS Number

    3D model (JSmol)

    Beilstein Reference

    741857
    ChEBI
    ChEMBL
    ChemSpider
    ECHA InfoCard 100.000.760 Edit this at Wikidata
    EC Number
    • 200-835-2

    Gmelin Reference

    895
    MeSH acetonitrile

    PubChem CID

    RTECS number
    • AL7700000
    UNII
    UN number 1648

    CompTox Dashboard (EPA)

    • InChI=1S/C2H3N/c1-2-3/h1H3 checkY

      Key: WEVYAHXRMPXWCK-UHFFFAOYSA-N checkY

    • CC#N

    Properties

    Chemical formula

    C2H3N
    Molar mass 41.053 g·mol−1
    Appearance Colorless liquid
    Odor Faint, distinct, fruity
    Density 0.786 g/cm3 at 25°C
    Melting point −46 to −44 °C; −51 to −47 °F; 227 to 229 K
    Boiling point 81.3 to 82.1 °C; 178.2 to 179.7 °F; 354.4 to 355.2 K

    Solubility in water

    Miscible
    log P −0.334
    Vapor pressure 9.71 kPa (at 20.0 °C)

    Henry's law
    constant
     (kH)

    530 μmol/(Pa·kg)
    Acidity (pKa) 25
    UV-vismax) 195 nm
    Absorbance ≤0.10

    Magnetic susceptibility (χ)

    −28.0×10−6 cm3/mol

    Refractive index (nD)

    1.344

    Dipole moment

    3.92 D
    Thermochemistry

    Heat capacity (C)

    91.69 J/(K·mol)

    Std molar
    entropy
    (S298)

    149.62 J/(K·mol)

    Std enthalpy of
    formation
    fH298)

    40.16–40.96 kJ/mol

    Std enthalpy of
    combustion
    cH298)

    −1256.03 – −1256.63 kJ/mol
    Hazards
    GHS labelling:

    Pictograms

    GHS02: Flammable GHS07: Exclamation mark

    Signal word

    Danger

    Hazard statements

    H225, H302, H312, H319, H332

    Precautionary statements

    P210, P280, P305+P351+P338
    NFPA 704 (fire diamond)
    NFPA 704 four-colored diamondHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 3: Liquids and solids that can be ignited under almost all ambient temperature conditions. Flash point between 23 and 38 °C (73 and 100 °F). E.g. gasolineInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
    2
    3
    0
    Flash point 2.0 °C (35.6 °F; 275.1 K)

    Autoignition
    temperature

    523.0 °C (973.4 °F; 796.1 K)
    Explosive limits 4.4–16.0%
    Lethal dose or concentration (LD, LC):

    LD50 (median dose)

    • 2 g/kg (dermal, rabbit)
  • 2.46 g/kg (oral, rat)
  • LC50 (median concentration)

    5655 ppm (guinea pig, 4 hr)
    2828 ppm (rabbit, 4 hr)
    53,000 ppm (rat, 30 min)
    7500 ppm (rat, 8 hr)
    2693 ppm (mouse, 1 hr)[4]

    LCLo (lowest published)

    16,000 ppm (dog, 4 hr)[4]
    NIOSH (US health exposure limits):

    PEL (Permissible)

    TWA 40 ppm (70 mg/m3)[3]

    REL (Recommended)

    TWA 20 ppm (34 mg/m3)[3]

    IDLH (Immediate danger)

    500 ppm[3]
    Related compounds

    Related alkanenitriles

  • Thiocyanic acid
  • Cyanogen iodide
  • Cyanogen bromide
  • Cyanogen chloride
  • Cyanogen fluoride
  • Aminoacetonitrile
  • Glycolonitrile
  • Cyanogen
  • Propionitrile
  • Aminopropionitrile
  • Malononitrile
  • Pivalonitrile
  • Acetone cyanohydrin
  • Related compounds

    DBNPA
    Supplementary data page
    Acetonitrile (data page)

    Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

    checkY verify (what is checkY☒N ?)

    Infobox references

    Acetonitrile, often abbreviated MeCN (methyl cyanide), is the chemical compound with the formula CH3CN and structure H3C−C≡N. This colourless liquid is the simplest organic nitrile (hydrogen cyanide is a simpler nitrile, but the cyanide anion is not classed as organic). It is produced mainly as a byproduct of acrylonitrile manufacture. It is used as a polar aprotic solventinorganic synthesis and in the purification of butadiene.[5] The N≡C−C skeleton is linear with a short C≡N distance of 1.16 Å.[6]

    Acetonitrile was first prepared in 1847 by the French chemist Jean-Baptiste Dumas.[7]

    Applications[edit]

    Acetonitrile is used mainly as a solvent in the purification of butadiene in refineries. Specifically, acetonitrile is fed into the top of a distillation column filled with hydrocarbons including butadiene, and as the acetonitrile falls down through the column, it absorbs the butadiene which is then sent from the bottom of the tower to a second separating tower. Heat is then employed in the separating tower to separate the butadiene.

    In the laboratory, it is used as a medium-polarity non-protic solvent that is miscible with water and a range of organic solvents, but not saturated hydrocarbons. It has a convenient range of temperatures at which it is a liquid, and a high dielectric constant of 38.8. With a dipole moment of 3.92 D,[8] acetonitrile dissolves a wide range of ionic and nonpolar compounds and is useful as a mobile phase in HPLC and LC–MS.

    It is widely used in battery applications because of its relatively high dielectric constant and ability to dissolve electrolytes. For similar reasons, it is a popular solvent in cyclic voltammetry.

    Its ultraviolet transparency UV cutoff, low viscosity and low chemical reactivity make it a popular choice for high-performance liquid chromatography (HPLC).

    Acetonitrile plays a significant role as the dominant solvent used in oligonucleotide synthesis from nucleoside phosphoramidites.

    Industrially, it is used as a solvent for the manufacture of pharmaceuticals and photographic film.[9]

    Organic synthesis[edit]

    Acetonitrile is a common two-carbon building block in organic synthesis[10] of many useful chemicals, including acetamidine hydrochloride, thiamine, and 1-naphthaleneacetic acid.[11] Its reaction with cyanogen chloride affords malononitrile.[5]

    As an electron pair donor[edit]

    Acetonitrile has a free electron pair at the nitrogen atom, which can form many transition metal nitrile complexes. Being weakly basic, it is an easily displaceable ligand. For example, bis(acetonitrile)palladium dichloride is prepared by heating a suspension of palladium chloride in acetonitrile:[12]

    PdCl2 + 2 CH3CN → PdCl2(CH3CN)2

    A related complex is tetrakis(acetonitrile)copper(I) hexafluorophosphate [Cu(CH3CN)4]+. The CH3CN groups in these complexes are rapidly displaced by many other ligands.

    It also forms Lewis adducts with group 13 Lewis acids like boron trifluoride.[13]Insuperacids, it is possible to protonate acetonitrile.[14]

    Production[edit]

    Acetonitrile is a byproduct from the manufacture of acrylonitrile. Most is combusted to support the intended process but an estimated several thousand tons are retained for the above-mentioned applications.[15] Production trends for acetonitrile thus generally follow those of acrylonitrile. Acetonitrile can also be produced by many other methods, but these are of no commercial importance as of 2002. Illustrative routes are by dehydration of acetamide or by hydrogenation of mixtures of carbon monoxide and ammonia.[16] In 1992, 14,700 tonnes (16,200 short tons) of acetonitrile were produced in the US.

    Acetonitrile shortage in 2008–2009[edit]

    Starting in October 2008, the worldwide supply of acetonitrile was low because Chinese production was shut down for the Olympics. Furthermore, a U.S. factory was damaged in Texas during Hurricane Ike.[17] Due to the global economic slowdown, the production of acrylonitrile used in acrylic fibers and acrylonitrile butadiene styrene (ABS) resins decreased. Acetonitrile is a byproduct in the production of acrylonitrile and its production also decreased, further compounding the acetonitrile shortage.[18] The global shortage of acetonitrile continued through early 2009.[needs update]

    Safety[edit]

    Toxicity[edit]

    Acetonitrile has only modest toxicity in small doses.[11][19] It can be metabolised to produce hydrogen cyanide, which is the source of the observed toxic effects.[9][20][21] Generally the onset of toxic effects is delayed, due to the time required for the body to metabolize acetonitrile to cyanide (generally about 2–12 hours).[11]

    Cases of acetonitrile poisoning in humans (or, to be more specific, of cyanide poisoning after exposure to acetonitrile) are rare but not unknown, by inhalation, ingestion and (possibly) by skin absorption.[20] The symptoms, which do not usually appear for several hours after the exposure, include breathing difficulties, slow pulse rate, nausea, and vomiting. Convulsions and coma can occur in serious cases, followed by death from respiratory failure. The treatment is as for cyanide poisoning, with oxygen, sodium nitrite, and sodium thiosulfate among the most commonly used emergency treatments.[20]

    It has been used in formulations for nail polish remover, despite its toxicity. At least two cases have been reported of accidental poisoning of young children by acetonitrile-based nail polish remover, one of which was fatal.[22] Acetone and ethyl acetate are often preferred as safer for domestic use, and acetonitrile has been banned in cosmetic products in the European Economic Area since March 2000.[23]

    Metabolism and excretion[edit]

    Compound Cyanide, concentration in brain (μg/kg) Oral LD50 (mg/kg)
    Potassium cyanide 700 ± 200 10
    Propionitrile 510 ± 80 40
    Butyronitrile 400 ± 100 50
    Malononitrile 600 ± 200 60
    Acrylonitrile 400 ± 100 90
    Acetonitrile 28 ± 5 2460
    Table salt (NaCl) 3000
    Ionic cyanide concentrations measured in the brains of Sprague-Dawley rats one hour after oral administration of an LD50 of various nitriles.[24]

    In common with other nitriles, acetonitrile can be metabolisedinmicrosomes, especially in the liver, to produce hydrogen cyanide, as was first shown by Pozzani et al. in 1959.[25] The first step in this pathway is the oxidation of acetonitrile to glycolonitrile by an NADPH-dependent cytochrome P450 monooxygenase. The glycolonitrile then undergoes a spontaneous decomposition to give hydrogen cyanide and formaldehyde.[19][20] Formaldehyde, a toxin and a carcinogen on its own, is further oxidized to formic acid, which is another source of toxicity.

    The metabolism of acetonitrile is much slower than that of other nitriles, which accounts for its relatively low toxicity. Hence, one hour after administration of a potentially lethal dose, the concentration of cyanide in the rat brain was 120 that for a propionitrile dose 60 times lower (see table).[24]

    The relatively slow metabolism of acetonitrile to hydrogen cyanide allows more of the cyanide produced to be detoxified within the body to thiocyanate (the rhodanese pathway). It also allows more of the acetonitrile to be excreted unchanged before it is metabolised. The main pathways of excretion are by exhalation and in the urine.[19][20][21]

    See also[edit]

    References[edit]

    1. ^ a b c d "Material Safety Data Sheet: Acetonitrile" (PDF). TedPella.com.
  • ^ a b Nomenclature of Organic Chemistry : IUPAC Recommendations and Preferred Names 2013 (Blue Book). Cambridge: The Royal Society of Chemistry. 2014. p. 902. doi:10.1039/9781849733069-FP001 (inactive 2024-05-06). ISBN 978-0-85404-182-4.{{cite book}}: CS1 maint: DOI inactive as of May 2024 (link)
  • ^ a b c NIOSH Pocket Guide to Chemical Hazards. "#0006". National Institute for Occupational Safety and Health (NIOSH).
  • ^ a b "Acetonitrile". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  • ^ a b "Archived copy" (PDF). Ashford's Dictionary of Industrial Chemicals, Third edition. p. 76. Archived from the original (PDF) on 2011-05-16. Retrieved 2011-03-31.{{cite web}}: CS1 maint: archived copy as title (link)
  • ^ Karakida, Ken'ichi; Fukuyama, Tsutomu; Kuchitsu, Kozo (1974). "Molecular Structures of Hydrogen Cyanide and Acetonitrile as Studied by Gas Electron Diffraction". Bulletin of the Chemical Society of Japan. 47 (2): 299–304. doi:10.1246/bcsj.47.299.
  • ^ Dumas, J.-B. (1847). "Action de l'acide phosphorique anhydre sur les sels ammoniacaux" [Action of anhydrous phosphoric acid on ammonium salts]. Comptes rendus. 25: 383–384.
  • ^ Steiner, P. A.; Gordy, W. (1966). "Journal of Molecular Spectroscopy". 21: 291. {{cite journal}}: Cite journal requires |journal= (help)
  • ^ a b Spanish Ministry of Health (2002), Acetonitrile. Summary Risk Assessment Report (PDF), Ispra (VA), Italy: European Chemicals Bureau, Special Publication I.01.65, archived from the original (PDF) on 2008-12-17
  • ^ DiBiase, S. A.; Beadle, J. R.; Gokel, G. W. "Synthesis of α,β-Unsaturated Nitriles from Acetonitrile: Cyclohexylideneacetonitrile and Cinnamonitrile". Organic Syntheses; Collected Volumes, vol. 7, p. 108.
  • ^ a b c Philip Wexler, ed. (2005), Encyclopedia of Toxicology, vol. 1 (2nd ed.), Elsevier, pp. 28–30, ISBN 0-12-745354-7
  • ^ Jürgen-Hinrich., Fuhrhop (2003). Organic synthesis : concepts and methods. Li, Guangtao, Dr. (3rd, completely rev. and enl. ed.). Weinheim: Wiley-VCH. p. 26. ISBN 9783527302727. OCLC 51068223.
  • ^ B. Swanson, D. F. Shriver, J. A. Ibers, "Nature of the donor-acceptor bond in acetonitrile-boron trihalides. The structures of the boron trifluoride and boron trichloride complexes of acetonitrile", Inorg. Chem., 2969., volume 8, pp. 2182-2189, {{doi:10.1021/ic50080a032}}
  • ^ Haiges, Ralf; Baxter, Amanda F.; Goetz, Nadine R.; Axhausen, Joachim A.; Soltner, Theresa; Kornath, Andreas; Christe, Kalr O. (2016). "Protonation of nitriles: isolation and characterization of alkyl- and arylnitrilium ions". Dalton Transactions. 45 (20): 8494–8499. doi:10.1039/C6DT01301E. PMID 27116374.
  • ^ Pollak, Peter; Romeder, Gérard; Hagedorn, Ferdinand; Gelbke, Heinz-Peter. "Nitriles". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a17_363. ISBN 978-3527306732.
  • ^ US 4179462, Olive, G. & Olive, S., "Process for preparing acetonitrile", published 1979-12-18, assigned to Monsanto Company 
  • ^ Lowe, Derek (2009). "The Great Acetonitrile Shortage". Science Translational Medicine.
  • ^ A. Tullo (2008). "A Solvent Dries Up". Chemical & Engineering News. 86 (47): 27. doi:10.1021/cen-v086n047.p027.
  • ^ a b c Institut national de recherche et de sécurité (INRS) (2004), Fiche toxicologique no. 104 : Acétonitrile (PDF), Paris: INRS, ISBN 2-7389-1278-8, archived from the original (PDF) on 2011-07-28, retrieved 2008-08-19
  • ^ a b c d e International Programme on Chemical Safety (1993), Environmental Health Criteria 154. Acetonitrile, Geneva: World Health Organization
  • ^ a b Greenberg, Mark (1999), Toxicological Review of Acetonitrile (PDF), Washington, DC: U.S. Environmental Protection Agency
  • ^ Caravati, E. M.; Litovitz, T. (1988). "Pediatric cyanide intoxication and death from an acetonitrile-containing cosmetic". J. Am. Med. Assoc. 260 (23): 3470–73. doi:10.1001/jama.260.23.3470. PMID 3062198.
  • ^ "Twenty-Fifth Commission Directive 2000/11/EC of 10 March 2000 adapting to technical progress Annex II to Council Directive 76/768/EEC on the approximation of laws of the Member States relating to cosmetic products". Official Journal of the European Communities. L65: 22–25. 2000-03-14.
  • ^ a b Ahmed, A. E.; Farooqui, M. Y. H. (1982), "Comparative toxicities of aliphatic nitriles", Toxicol. Lett., 12 (2–3): 157–64, doi:10.1016/0378-4274(82)90179-5, PMID 6287676
  • ^ Pozzani, U. C.; Carpenter, C. P.; Palm, P. E.; Weil, C. S.; Nair, J. H. (1959), "An investigation of the mammalian toxicity of acetonitrile", J. Occup. Med., 1 (12): 634–642, doi:10.1097/00043764-195912000-00003, PMID 14434606
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Acetonitrile&oldid=1222455593"

    Categories: 
    Hazardous air pollutants
    Alkanenitriles
    Solvents
    Ligands
    Organic compounds with 2 carbon atoms
    Hidden categories: 
    CS1 maint: DOI inactive as of May 2024
    CS1 maint: archived copy as title
    CS1 errors: missing periodical
    Articles with short description
    Short description is different from Wikidata
    Articles without InChI source
    Articles without KEGG source
    ECHA InfoCard ID from Wikidata
    Chembox having GHS data
    Chemical articles having a data page
    Articles containing unverified chemical infoboxes
    Chembox image size set
    Short description matches Wikidata
    Articles containing potentially dated statements from 1992
    All articles containing potentially dated statements
    Wikipedia articles in need of updating from February 2018
    All Wikipedia articles in need of updating
    Articles with GND identifiers
    Articles with J9U identifiers
    Articles with LCCN identifiers
     



    This page was last edited on 6 May 2024, at 01:49 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki