Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  



























Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 History  





2 Advantages and disadvantages  





3 Epitope design  





4 Applications  



4.1  Cancer  





4.2  Other common diseases  







5 References  














Peptide vaccine






Català
Deutsch


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 


















From Wikipedia, the free encyclopedia
 


Peptide-based synthetic vaccines (epitope vaccines) are subunit vaccines made from peptides. The peptides mimic the epitopes of the antigen that triggers direct or potent immune responses.[1] Peptide vaccines can not only induce protection against infectious pathogens and non-infectious diseases but also be utilized as therapeutic cancer vaccines, where peptides from tumor-associated antigens are used to induce an effective anti-tumor T-cell response.[2]

History[edit]

The traditional vaccines are the whole live or fixed pathogens. The second generation of vaccines is mainly the protein purified from the pathogen. The third generation of vaccines is the DNA or plasmid that can express the proteins of the pathogen. Peptide vaccines are the latest step in the evolution of vaccines.[3]

Advantages and disadvantages[edit]

Compared with the traditional vaccines such as the whole fixed pathogens or protein molecules, the peptide vaccines have several advantages and disadvantages.[4]

Advantages:

Disadvantages:

Epitope design[edit]

The whole peptide vaccine is to mimic the epitope of an antigen, so epitope design is the most important stage of vaccine development and requires an accurate understanding of the amino acid sequence of the immunogenic protein interested. The designed epitope is expected to generate strong and long-period immuno-response against the pathogen. The followings are the points to consider when designing the epitope:

Applications[edit]

Chemical structures of peptide components of Alzheimer peptide vaccines (A) CAD106 and (B) ACI-35.[9]

Cancer[edit]

Other common diseases[edit]

References[edit]

  1. ^ Skwarczynski M, Toth I (February 2016). "Peptide-based synthetic vaccines". Chemical Science. 7 (2): 842–854. doi:10.1039/C5SC03892H. PMC 5529997. PMID 28791117.
  • ^ Melief CJ, van der Burg SH (May 2008). "Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines". Nature Reviews. Cancer. 8 (5): 351–360. doi:10.1038/nrc2373. PMID 18418403. S2CID 205468352.
  • ^ Schneble E, Clifton GT, Hale DF, Peoples GE (2016). "Peptide-Based Cancer Vaccine Strategies and Clinical Results". In Thomas S (ed.). Vaccine Design. Methods in Molecular Biology. Vol. 1403. New York, NY: Springer. pp. 797–817. doi:10.1007/978-1-4939-3387-7_46. ISBN 978-1-4939-3387-7. PMID 27076168.
  • ^ Skwarczynski M, Toth I (February 2016). "Peptide-based synthetic vaccines". Chemical Science. 7 (2): 842–854. doi:10.1039/C5SC03892H. PMC 5529997. PMID 28791117.
  • ^ Pearson MS, Pickering DA, Tribolet L, Cooper L, Mulvenna J, Oliveira LM, et al. (May 2010). "Neutralizing antibodies to the hookworm hemoglobinase Na-APR-1: implications for a multivalent vaccine against hookworm infection and schistosomiasis". The Journal of Infectious Diseases. 201 (10): 1561–1569. doi:10.1086/651953. PMID 20367477.
  • ^ Diemert DJ, Pinto AG, Freire J, Jariwala A, Santiago H, Hamilton RG, et al. (July 2012). "Generalized urticaria induced by the Na-ASP-2 hookworm vaccine: implications for the development of vaccines against helminths". The Journal of Allergy and Clinical Immunology. 130 (1): 169–76.e6. doi:10.1016/j.jaci.2012.04.027. PMID 22633322.
  • ^ Cooper JA, Hayman W, Reed C, Kagawa H, Good MF, Saul A (April 1997). "Mapping of conformational B cell epitopes within alpha-helical coiled coil proteins". Molecular Immunology. 34 (6): 433–440. doi:10.1016/S0161-5890(97)00056-4. PMID 9307059.
  • ^ Azmi F, Ahmad Fuaad AA, Skwarczynski M, Toth I (March 2014). "Recent progress in adjuvant discovery for peptide-based subunit vaccines". Human Vaccines & Immunotherapeutics. 10 (3): 778–796. doi:10.4161/hv.27332. PMC 4130256. PMID 24300669.
  • ^ Malonis RJ, Lai JR, Vergnolle O (March 2020). "Peptide-Based Vaccines: Current Progress and Future Challenges". Chemical Reviews. 120 (6): 3210–3229. doi:10.1021/acs.chemrev.9b00472. PMC 7094793. PMID 31804810.
  • ^ Marincola FM, Rivoltini L, Salgaller ML, Player M, Rosenberg SA (July 1996). "Differential anti-MART-1/MelanA CTL activity in peripheral blood of HLA-A2 melanoma patients in comparison to healthy donors: evidence of in vivo priming by tumor cells". Journal of Immunotherapy with Emphasis on Tumor Immunology. 19 (4): 266–277. doi:10.1097/00002371-199607000-00003. PMID 8877721.
  • ^ Neal DE, Sharples L, Smith K, Fennelly J, Hall RR, Harris AL (April 1990). "The epidermal growth factor receptor and the prognosis of bladder cancer". Cancer. 65 (7): 1619–1625. doi:10.1002/1097-0142(19900401)65:7<1619::aid-cncr2820650728>3.0.co;2-q. PMID 2311071. S2CID 12449093.
  • ^ Palatnik-de-Sousa CB, Soares IS, Rosa DS (2018-04-18). "Editorial: Epitope Discovery and Synthetic Vaccine Design". Frontiers in Immunology. 9: 826. doi:10.3389/fimmu.2018.00826. PMC 5915546. PMID 29720983.
  • ^ Firbas C, Jilma B, Tauber E, Buerger V, Jelovcan S, Lingnau K, et al. (May 2006). "Immunogenicity and safety of a novel therapeutic hepatitis C virus (HCV) peptide vaccine: a randomized, placebo controlled trial for dose optimization in 128 healthy subjects". Vaccine. 24 (20): 4343–4353. doi:10.1016/j.vaccine.2006.03.009. PMID 16581161.
  • ^ Atsmon J, Caraco Y, Ziv-Sefer S, Shaikevich D, Abramov E, Volokhov I, et al. (October 2014). "Priming by a novel universal influenza vaccine (Multimeric-001)-a gateway for improving immune response in the elderly population". Vaccine. 32 (44): 5816–5823. doi:10.1016/j.vaccine.2014.08.031. PMID 25173483.
  • ^ van Doorn E, Liu H, Ben-Yedidia T, Hassin S, Visontai I, Norley S, et al. (March 2017). "Evaluating the immunogenicity and safety of a BiondVax-developed universal influenza vaccine (Multimeric-001) either as a standalone vaccine or as a primer to H5N1 influenza vaccine: Phase IIb study protocol". Medicine. 96 (11): e6339. doi:10.1097/md.0000000000006339. PMC 5369918. PMID 28296763.
  • ^ Wiessner C, Wiederhold KH, Tissot AC, Frey P, Danner S, Jacobson LH, et al. (June 2011). "The second-generation active Aβ immunotherapy CAD106 reduces amyloid accumulation in APP transgenic mice while minimizing potential side effects". The Journal of Neuroscience. 31 (25): 9323–9331. doi:10.1523/jneurosci.0293-11.2011. PMC 6623465. PMID 21697382.
  • ^ Wang CY, Finstad CL, Walfield AM, Sia C, Sokoll KK, Chang TY, et al. (April 2007). "Site-specific UBITh amyloid-beta vaccine for immunotherapy of Alzheimer's disease". Vaccine. 25 (16): 3041–3052. doi:10.1016/j.vaccine.2007.01.031. PMID 17287052.
  • ^ Davtyan H, Ghochikyan A, Petrushina I, Hovakimyan A, Davtyan A, Poghosyan A, et al. (March 2013). "Immunogenicity, efficacy, safety, and mechanism of action of epitope vaccine (Lu AF20513) for Alzheimer's disease: prelude to a clinical trial". The Journal of Neuroscience. 33 (11): 4923–4934. doi:10.1523/jneurosci.4672-12.2013. PMC 3634356. PMID 23486963.
  • ^ Lacosta AM, Pascual-Lucas M, Pesini P, Casabona D, Pérez-Grijalba V, Marcos-Campos I, et al. (January 2018). "Safety, tolerability and immunogenicity of an active anti-Aβ40 vaccine (ABvac40) in patients with Alzheimer's disease: a randomised, double-blind, placebo-controlled, phase I trial". Alzheimer's Research & Therapy. 10 (1): 12. doi:10.1002/alz.045720. PMC 5789644. PMID 29378651.
  • ^ Hickman DT, López-Deber MP, Ndao DM, Silva AB, Nand D, Pihlgren M, et al. (April 2011). "Sequence-independent control of peptide conformation in liposomal vaccines for targeting protein misfolding diseases". The Journal of Biological Chemistry. 286 (16): 13966–13976. doi:10.1074/jbc.m110.186338. PMC 3077597. PMID 21343310.
  • ^ Kontsekova E, Zilka N, Kovacech B, Novak P, Novak M (2014). "First-in-man tau vaccine targeting structural determinants essential for pathological tau-tau interaction reduces tau oligomerisation and neurofibrillary degeneration in an Alzheimer's disease model". Alzheimer's Research & Therapy. 6 (4): 44. doi:10.1186/alzrt278. PMC 4255368. PMID 25478017.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Peptide_vaccine&oldid=1191698215"

    Category: 
    Peptide vaccines
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
     



    This page was last edited on 25 December 2023, at 04:31 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki